期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于双向长短时记忆和卷积Transformer的声学词嵌入模型 被引量:3
1
作者 高芸芸 赵腊生 张强 《计算机应用》 CSCD 北大核心 2024年第1期123-128,共6页
示例查询语音关键词检测中,卷积神经网络(CNN)或者循环神经网络(RNN)提取到的声学词嵌入语音信息有限,为更好地表示语音内容以及改善模型的性能,提出一种基于双向长短时记忆(Bi-LSTM)和卷积Transformer的声学词嵌入模型。首先,使用Bi-L... 示例查询语音关键词检测中,卷积神经网络(CNN)或者循环神经网络(RNN)提取到的声学词嵌入语音信息有限,为更好地表示语音内容以及改善模型的性能,提出一种基于双向长短时记忆(Bi-LSTM)和卷积Transformer的声学词嵌入模型。首先,使用Bi-LSTM提取特征、对语音序列进行建模,并通过叠加方式来提高模型的学习能力;其次,为了能在捕获全局信息的同时学习到局部信息,将CNN和Transformer编码器并联连接组成卷积Transformer,充分利用它在特征提取上的优势,聚合更多有效的信息,提高嵌入的区分性。在对比损失约束下,所提模型平均精度达到了94.36%,与基于注意力的Bi-LSTM模型相比,平均精度提高了1.76%。实验结果表明,所提模型可以有效改善模型性能,更好地实现示例查询语音关键词检测。 展开更多
关键词 卷积神经网络 声学词嵌入 语音信息 示例查询语音关键词检测 循环神经网络
在线阅读 下载PDF
基于多尺度距离矩阵的语音关键词检测与细粒度定位方法
2
作者 李祥瑞 毛启容 《计算机应用研究》 CSCD 北大核心 2024年第11期3370-3375,共6页
针对现有语音关键词检测方法定位精度低的问题,提出了一种基于多尺度距离矩阵的语音关键词检测与细粒度定位方法(spoken term detection and fine-grained localization method based on multi-scale distance matrices,MF-STD)。该方... 针对现有语音关键词检测方法定位精度低的问题,提出了一种基于多尺度距离矩阵的语音关键词检测与细粒度定位方法(spoken term detection and fine-grained localization method based on multi-scale distance matrices,MF-STD)。该方法首先利用残差卷积网络提取特征并构建距离矩阵以建模输入之间的相关性;其次通过多尺度分割和解耦头学习不同尺度下的定位信息;最后根据多尺度加权定位损失、置信度损失和分类损失优化模型,实现对关键词存在性和时域边界的细粒度预测。在LibriSpeech数据集上的实验结果表明,MF-STD在集内词的检测中,精准率和交并比分别达到97.1%和88.6%;在集外词的检测中,精准率和交并比分别达到96.7%和88.2%。与现有的语音关键词检测与定位方法相比,MF-STD的检测准确率和定位精度显著提升,充分证明该方法的先进性,也证明了多尺度特征建模与细粒度定位约束在语音关键词检测任务中的有效性。 展开更多
关键词 语音关键词检测 语音细粒度定位 多尺度检测 残差卷积网络
在线阅读 下载PDF
基于音素后验概率的样例语音关键词检测方法 被引量:3
3
作者 张卫强 宋贝利 +1 位作者 蔡猛 刘加 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2015年第9期757-760,共4页
低资源条件下的语音关键词检测是一个具有挑战性的问题,因为传统的基于大词汇量连续语音识别(LVCSR)的语音关键词检测方法不再适用.针对此问题提出了一种基于深度神经网络(DNN)输出层后验概率特征和改进的动态时间规整(DTW)算法的语音... 低资源条件下的语音关键词检测是一个具有挑战性的问题,因为传统的基于大词汇量连续语音识别(LVCSR)的语音关键词检测方法不再适用.针对此问题提出了一种基于深度神经网络(DNN)输出层后验概率特征和改进的动态时间规整(DTW)算法的语音关键词检测方法.采用无监督高斯混合模型(GMM)和中、英文DNN音素模型得出的输入特征构建互补的子系统,并在SWS2013多语种数据集上进行实验.结果表明:相对于基线系统,分数层面的多语种、多系统融合能够有效地提升语音关键词检测系统的性能. 展开更多
关键词 样例查询 语音关键词检测 DNN输出层特征 动态时间规整
在线阅读 下载PDF
基于动态时间规整的语音样例快速检索算法 被引量:7
4
作者 张连海 冯志远 +1 位作者 陈琦 李勃昊 《计算机应用研究》 CSCD 北大核心 2014年第6期1688-1692,共5页
为了提高基于DTW算法的语音检索系统的速度,提出了一种基于分段累积近似下界估计的动态时间规整算法,实现语音样例快速检索。该方法首先提取查询样例和测试集的音素后验概率作为特征参数,然后计算语音样例和测试集中所有候选分段实际动... 为了提高基于DTW算法的语音检索系统的速度,提出了一种基于分段累积近似下界估计的动态时间规整算法,实现语音样例快速检索。该方法首先提取查询样例和测试集的音素后验概率作为特征参数,然后计算语音样例和测试集中所有候选分段实际动态规整得分的分段累积近似下界估计,最后采用K-最近邻算法与动态时间规整算法搜索与语音样例相似度最高的区域。实验结果表明,此算法的检索速度比直接运用DTW算法快6.32倍,而对其检索精度无任何影响。 展开更多
关键词 语音样例检索 音素后验概率 分段累积近似下界估计 动态时间规整 内积距离
在线阅读 下载PDF
汉语语音检索的集外词问题与两阶段检索方法 被引量:8
5
作者 孟莎 刘加 《中文信息学报》 CSCD 北大核心 2009年第6期91-97,共7页
该文针对大规模汉语语音检索任务提出汉语语音检索中的集外词问题和针对集外查询词的两阶段检索方法。汉语语音识别和检索中,集外词可以以词表词序列的形式被识别和检索到,因此被认为不存在集外词问题;该文发现集外查询词性能远远低于... 该文针对大规模汉语语音检索任务提出汉语语音检索中的集外词问题和针对集外查询词的两阶段检索方法。汉语语音识别和检索中,集外词可以以词表词序列的形式被识别和检索到,因此被认为不存在集外词问题;该文发现集外查询词性能远远低于集内查询词,将此问题定义为汉语语音检索任务的集外词问题,并提出两阶段的检索方法,第一阶段通过模糊音素匹配的方法提高查全率,第二阶段通过词格修正的方法提高查准率。实验表明,两阶段的检索方法极大的提高了典型集外查询词的检索性能,FOM指标相对基线系统提高了24.1%。 展开更多
关键词 计算机应用 中文信息处理 汉语语音检索 集外词 词格 大词汇量连续语音识别
在线阅读 下载PDF
基于分段动态时间规整的语音样例快速检索 被引量:5
6
作者 冯志远 张连海 《数据采集与处理》 CSCD 北大核心 2014年第2期265-273,共9页
提出了一种融合下界估计和分段动态时间规整的语音样例快速检索方法。该方法针对缺乏合适的训练数据等语音资源较为有限的语言进行快速检索所设计。此方法首先提取查询样例和测试集的音素后验概率;然后,根据限制条件在测试语句中选定候... 提出了一种融合下界估计和分段动态时间规整的语音样例快速检索方法。该方法针对缺乏合适的训练数据等语音资源较为有限的语言进行快速检索所设计。此方法首先提取查询样例和测试集的音素后验概率;然后,根据限制条件在测试语句中选定候选分段,并计算查询样例和每个候选分段之间实际动态时间规整得分的下界估计,再运用K最近邻搜索算法搜索与查询样例相似度最高的分段;最后,使用虚拟相关反馈技术对检索结果进行修正。实验结果表明:尽管此方法的检索精度略低于直接运用动态时间规整进行检索的检索精度,但其检索速度优于后者,且检索结果经过虚拟相关反馈技术修正后,其检索精度也得到有效提升。 展开更多
关键词 语音样例检索 音素后验概率 分段动态时间规整 下界估计 虚拟相关反馈
在线阅读 下载PDF
基于分割识别的蒙古语语音关键词检测方法的研究 被引量:2
7
作者 飞龙 高光来 +1 位作者 闫学亮 王炜华 《计算机科学》 CSCD 北大核心 2013年第9期208-211,共4页
蒙古文属于黏着语,词根和后缀能够组合成近百万的蒙古文单词。现有的蒙古语大词汇量连续语音识别(LVCSR)系统的发音词典无法包含所有蒙古文单词。同时发音词典较大时,训练语料的稀疏将导致LVCSR系统的性能明显下降。为了解决LVCSR系统... 蒙古文属于黏着语,词根和后缀能够组合成近百万的蒙古文单词。现有的蒙古语大词汇量连续语音识别(LVCSR)系统的发音词典无法包含所有蒙古文单词。同时发音词典较大时,训练语料的稀疏将导致LVCSR系统的性能明显下降。为了解决LVCSR系统中大多数蒙古文单词的识别问题和蒙古语语音关键词检测系统中大量集外词的检测问题,结合蒙古文的构词特点,提出了基于分割识别的蒙古语LVCSR方法,并建立了对应的声学模型和语言模型。最后,将此方法应用到了蒙古语语音关键词检测系统中并在蒙古语语音语料上进行了测试。实验结果表明,基于分割识别的蒙古语LVCSR方法能解决大部分蒙古文单词的识别问题,并将蒙古语语音关键词检测系统的大量集外词转化成了集内词,大幅度提高了检测系统的查准率和召回率。 展开更多
关键词 蒙古语 词干 结尾后缀 关键词检测 集外词 混淆网络
在线阅读 下载PDF
基于加权有限状态转换器的语音查询项检索技术 被引量:2
8
作者 陆梨花 张连海 陈琦 《数据采集与处理》 CSCD 北大核心 2015年第2期390-398,共9页
为了提高语音查询项检索效率,提出了一种在加权有限状态转换器(Weighted finite-state transducer,WFST)框架下以混淆网络代替词格建立索引的技术。在索引建立阶段,首先将词格转化为混淆网络并用自动机形式表示,然后利用自动机构建基于... 为了提高语音查询项检索效率,提出了一种在加权有限状态转换器(Weighted finite-state transducer,WFST)框架下以混淆网络代替词格建立索引的技术。在索引建立阶段,首先将词格转化为混淆网络并用自动机形式表示,然后利用自动机构建基于时间的因子转换器,最后将所有因子转换器进行联合及优化得到索引。在查询阶段,将查询项转化为自动机形式后与索引进行合成运算得到表示查询结果的自动机。实验结果表明,在保证系统检测正确率的前提下,与直接以词格建立的WFST索引相比,以混淆网络建立的WFST索引尺寸更小,检索速度更快,因而系统性能更好。 展开更多
关键词 加权有限状态转换器 语音查询项检索 混淆网络 因子转换器
在线阅读 下载PDF
基于声学分段模型的无监督语音样例检测 被引量:2
9
作者 李勃昊 张连海 郑永军 《数据采集与处理》 CSCD 北大核心 2016年第2期407-414,共8页
提出一种基于声学分段模型的无监督语音样例检测方法。该方法首先利用高斯混合模型(Gaussian mixture model,GMM)将训练数据频谱参数转换为后验概率特征向量,采用层次聚类算法确定后验概率的边界信息,得到声学分段;然后通过k-means算法... 提出一种基于声学分段模型的无监督语音样例检测方法。该方法首先利用高斯混合模型(Gaussian mixture model,GMM)将训练数据频谱参数转换为后验概率特征向量,采用层次聚类算法确定后验概率的边界信息,得到声学分段;然后通过k-means算法将片段聚类并添加标签,构建基于后验概率的声学分段模型。检索时以模型对查询样例与检索文档的解码序列代替测量矩阵以降低检索时间,通过基于最小编辑距离的动态匹配检索查询项,最小编辑距离的代价函数由模型相似度距离矩阵修正。实验结果表明,相比GMM及传统声学分段模型,本文提出的方法性能更好,检索速度得到显著提升。 展开更多
关键词 声学分段模型 语音样例检测 后验概率特征 无监督
在线阅读 下载PDF
基于特征空间轨迹信息的语音关键词检测方法 被引量:2
10
作者 田颖慧 贺前华 +2 位作者 郑若伟 危卓 李艳雄 《电子学报》 EI CAS CSCD 北大核心 2023年第10期2915-2924,共10页
当前语音关键词检测的主流技术为深度学习,需要大规模标注样本进行训练,难以应用于更普遍的低资源场景.本文提出一种基于音频特征空间轨迹信息的低资源语音关键词检测方法,该方法基于“词是由更小语言单元(音节、音素)的结构化组成,以... 当前语音关键词检测的主流技术为深度学习,需要大规模标注样本进行训练,难以应用于更普遍的低资源场景.本文提出一种基于音频特征空间轨迹信息的低资源语音关键词检测方法,该方法基于“词是由更小语言单元(音节、音素)的结构化组成,以及语言单元声学特征具有稳定性(统计意义)”的事实,结合物理几何空间定位的原理,构建语音关键词的特征空间表达、时序信息表达和局部区分信息知识.语音关键词检测时,依据语音段的特征空间轨迹信息分层次进行判决,实现了模式信息与统计信息的综合应用.其中语音特征空间是利用丰富的无标注语音样本构建音频特征空间的标识子表达,而语音关键词的特征空间轨迹信息利用少量关键词语音样本构建.多个实验结果表明,本文算法在低资源时(100个样本以下),相比HMM和CRNN有显著优势,10个训练样本时,相比HMM,FRR绝对下降了20.5%,FAR绝对下降了8.7 FP/h;而在训练样本量较充分(300个样本及以上)时,与CRNN有大致相当的性能. 展开更多
关键词 语音关键词检测 音频特征空间 特征空间轨迹信息 低资源
在线阅读 下载PDF
采用HDPHMM符号化器的语音查询样例检测方法 被引量:1
11
作者 曹建凯 张连海 《信号处理》 CSCD 北大核心 2017年第5期703-710,共8页
提出一种基于层级狄利克雷过程隐马尔科夫模型(HDPHMM)符号化器的无监督语音查询样例检测(Qb E-STD)方法。该方法首先应用一个双状态层隐马尔科夫模型,其中顶层状态用于表示所发现的声学单元,底层状态用于建模顶层状态的发射概率,通过... 提出一种基于层级狄利克雷过程隐马尔科夫模型(HDPHMM)符号化器的无监督语音查询样例检测(Qb E-STD)方法。该方法首先应用一个双状态层隐马尔科夫模型,其中顶层状态用于表示所发现的声学单元,底层状态用于建模顶层状态的发射概率,通过对顶层状态假设一个层级狄利克雷过程先验,获得非参贝叶斯模型HDPHMM。使用无标注语音数据对该模型进行训练,然后对测试语音和查询样例输出后验概率特征矢量,使用非负矩阵分解算法对后验概率进行优化得到新的特征,然后在此基础上,应用修正分段动态时间规整算法进行检索,构成Qb E-STD系统。实验结果表明,相比于基于高斯混合模型符号化器的基线系统,本文所提出的方法性能更优,检索精度得到显著提升。 展开更多
关键词 无监督 语音查询样例检测 层级狄利克雷过程 非负矩阵分解
在线阅读 下载PDF
多流信息融合的集外词检索
12
作者 熊世富 郭武 《数据采集与处理》 CSCD 北大核心 2014年第2期274-279,共6页
针对关键词中的集外词检索任务,提出采用音素、音节、词片三种子词单元进行多流信息的联合检索算法,其中对基于音素的语音检索(Spoken term detection,STD)系统使用基于n元语言模型-加权有限状态机的完全匹配检索降低漏警,对基于音节、... 针对关键词中的集外词检索任务,提出采用音素、音节、词片三种子词单元进行多流信息的联合检索算法,其中对基于音素的语音检索(Spoken term detection,STD)系统使用基于n元语言模型-加权有限状态机的完全匹配检索降低漏警,对基于音节、词片的STD系统使用模糊匹配检索降低虚警,最后采用线性逻辑回归(Linear logistic regression,LLR)的算法将三个子系统的结果进行融合。在NIST STD 2006语音检索评测的英语电话会话语音测试集上的实验结果表明,相对于最好的单流系统,多流信息融合获得了12%的实际词项权重值(Actual term weighted value,ATWV)相对提升。 展开更多
关键词 语音检索 集外词 加权有限状态机
在线阅读 下载PDF
基于wav2vec预训练的样例关键词识别 被引量:5
13
作者 李昭奇 黎塔 《计算机科学》 CSCD 北大核心 2022年第1期59-64,共6页
样例关键词识别是将语音关键词片段与语音流中的片段匹配的任务。在低资源或零资源的情况下,样例关键词识别通常采用基于动态时间规正的方法。近年来,神经网络声学词嵌入已成为一种常用的样例关键词识别方法,但神经网络的方法受限于标... 样例关键词识别是将语音关键词片段与语音流中的片段匹配的任务。在低资源或零资源的情况下,样例关键词识别通常采用基于动态时间规正的方法。近年来,神经网络声学词嵌入已成为一种常用的样例关键词识别方法,但神经网络的方法受限于标注数据数量。使用wav2vec预训练可以减少神经网络对数据量的依赖,提升系统的性能。使用wav2vec模型提取的预训练特征直接替换梅尔频率倒谱系数特征后,在SwitchBoard语料库中提取的数据集上使双向长短时记忆网络的神经网络声学词嵌入系统的平均准确率提高了11.1%,等精度召回值提高了10.0%。将wav2vec特征与梅尔频率倒谱系数特征相融合以提取嵌入向量的方法进一步提高了系统的性能,与仅使用wav2vec的方法相比,融合方法的平均准确率提高了5.3%,等精度召回值提高了2.5%。 展开更多
关键词 声学词嵌入 孤立词识别 wav2vec预训练 样例查询 语音片段查询
在线阅读 下载PDF
基于音素混淆网络的蒙古语语音关键词检测方法的研究
14
作者 飞龙 高光来 鲍玉来 《中文信息学报》 CSCD 北大核心 2015年第1期178-182,共5页
蒙古语语音识别系统的词表很难覆盖所有的蒙古文单词,并且随着社会的发展,蒙古文的新词和外来词也越来越多。为了解决蒙古语语音关键词检测系统中的集外词检测问题,该文提出了基于音素混淆网络的蒙古语语音关键词检测方法,并采用音素混... 蒙古语语音识别系统的词表很难覆盖所有的蒙古文单词,并且随着社会的发展,蒙古文的新词和外来词也越来越多。为了解决蒙古语语音关键词检测系统中的集外词检测问题,该文提出了基于音素混淆网络的蒙古语语音关键词检测方法,并采用音素混淆矩阵改进了关键词的置信度计算方法。实验结果表明,基于音素混淆网络的蒙古语语音关键词检测方法可以较好地解决集外词的检测问题。蒙古语语音关键词检测系统采用改进的置信度计算方法后精确率提高了6%,召回率提高了2.69%,性能得到明显的提升。 展开更多
关键词 蒙古语 关键词检测 集外词 混淆网络 音素混淆矩阵
在线阅读 下载PDF
基于NMF后验特征优化的语音查询样例检测
15
作者 曹建凯 张连海 李勃昊 《数据采集与处理》 CSCD 北大核心 2017年第6期1198-1207,共10页
提出一种基于非负矩阵分解(Nonnegative matrix factorization,NMF)后验特征优化和修正分段动态时间规整(Segmental dynamic time warping,SDTW)检索的无监督语音查询样例检测方法。该方法首先应用频域线性预测(Frequency domain linear... 提出一种基于非负矩阵分解(Nonnegative matrix factorization,NMF)后验特征优化和修正分段动态时间规整(Segmental dynamic time warping,SDTW)检索的无监督语音查询样例检测方法。该方法首先应用频域线性预测(Frequency domain linear prediction,FDLP)声学特征参数代替梅尔频率倒谱系数(Mel-frequency cepstral coefficients,MFCCs)训练高斯混合模型(Gaussian mixture model,GMM)模型,然后使用NMF算法对高斯后验特征矩阵进行分解,将得到的基矩阵作为子空间变换矩阵对原始后验特征投影,投影可以突出特征中主要分量,平滑距离矩阵。在检索阶段,使用多相邻输出得分对最佳匹配得分进行修正,用于代替标准SDTW算法的1-best输出得分。实验结果表明,在不增加检索时间的情况下,该方法相比应用MFCCs和FDLP特征的基线系统性能提升明显,检索精度分别相对提升了18.6%和18.1%。 展开更多
关键词 无监督 查询样例检测 后验特征 非负矩阵分解优化 修正分段动态时间规整
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部