淬火-分配(Quenching and partitioning,Q&P)钢是淬火和分配复合作用的结果,淬火得到高强度马氏体基体,分配稳定残留奥氏体提高塑性。本工作通过采用具有不同冷速的淬火介质———油、13%PAG和HX-2000淬火,研究了Q&P工艺中淬火...淬火-分配(Quenching and partitioning,Q&P)钢是淬火和分配复合作用的结果,淬火得到高强度马氏体基体,分配稳定残留奥氏体提高塑性。本工作通过采用具有不同冷速的淬火介质———油、13%PAG和HX-2000淬火,研究了Q&P工艺中淬火冷速对中碳钢组织及性能的影响,并探讨了不同分配温度对碳分配过程的影响。结果表明,淬火快速冷却能得到高碳马氏体组织,有利于促进分配过程中马氏体向残留奥氏体的碳扩散,提高碳分配程度,并且随着淬火冷速的增加,马氏体有效晶粒尺寸减小、马氏体组织细化、位错密度增加,从而使中碳钢得到优异的强度和塑性。高温分配能减弱马氏体和残留奥氏体间的碳不均匀性,促进碳从马氏体向残留奥氏体中扩散,起到稳定残留奥氏体的作用,提高中碳钢的断后伸长率。当采用13%PAG淬火、320℃分配时,中碳钢伸长率为10.34%~10.37%,强塑积能达到18.94~19.21 GPa%,表现出更高的强塑性匹配。展开更多
设计了一种中碳中锰Q&P(Quenching and partitioning)钢,基于热力学平衡理论计算分析了其相变过程,通过扫描电镜(SEM)、背散射电子衍射(EBSD)和透射电镜(TEM)研究了实验钢经不同热处理后的微观组织,测试了其力学性能,并采用X射线衍...设计了一种中碳中锰Q&P(Quenching and partitioning)钢,基于热力学平衡理论计算分析了其相变过程,通过扫描电镜(SEM)、背散射电子衍射(EBSD)和透射电镜(TEM)研究了实验钢经不同热处理后的微观组织,测试了其力学性能,并采用X射线衍射仪(XRD)进一步分析了拉伸断裂前后残留奥氏体含量的演变规律。结果表明:室温下实验钢微观组织为板条状马氏体和弥散分布的残留奥氏体;残留奥氏体主要存在于马氏体板条之间和原始奥氏体晶界处;随配分时间延长,抗拉强度逐渐降低,延伸率呈现升高趋势;试样拉断后,断口处残留奥氏体含量在3.5%~4.5%之间,明显低于拉伸前的含量(6.94%~10.78%),说明大部分残留奥氏体在拉伸过程中发生了TRIP效应,提高了实验钢的塑性。展开更多
采用盐浴炉对硅-锰系Q&P(quenching and partitioning)钢进行了Q&P工艺处理,研究了分配时间对热处理后试验钢显微组织、力学性能、残余奥氏体含量及残余奥氏体中碳含量的影响。结果表明:试验钢的显微组织为板条马氏体和残余奥氏...采用盐浴炉对硅-锰系Q&P(quenching and partitioning)钢进行了Q&P工艺处理,研究了分配时间对热处理后试验钢显微组织、力学性能、残余奥氏体含量及残余奥氏体中碳含量的影响。结果表明:试验钢的显微组织为板条马氏体和残余奥氏体,残余奥氏体以两种形态分布在不同位置,一种是以薄膜状分布在马氏体板条间,另一种是以块状分布在原奥氏体晶界处;在300℃的分配温度下进行较长时间保温能取得较好的强塑积,随着分配时间的延长,试验Q&P钢的残余奥氏体含量及残余奥氏体中的碳含量均不断增加,分配时间为1 200 s时所得试验钢的强塑积最高,可达37 300 MPa.%以上。展开更多
主要对0.19C-1.52Si-1.53Mn-0.14Al-0.048Nb和0.19C-1.52Si-1.48Mn-0.15Al两种成分的钢进行了Q&P(quenching and partitioning)工艺处理,并研究二次淬火对Q&P钢组织性能的影响.结果表明:Nb的加入能够起到细晶强化和沉淀强化的效...主要对0.19C-1.52Si-1.53Mn-0.14Al-0.048Nb和0.19C-1.52Si-1.48Mn-0.15Al两种成分的钢进行了Q&P(quenching and partitioning)工艺处理,并研究二次淬火对Q&P钢组织性能的影响.结果表明:Nb的加入能够起到细晶强化和沉淀强化的效果,提高Q&P钢的综合性能.强塑积最高可达到25 190 MPa.%.二次淬火能够提高实验钢最终的马氏体含量,并大大提高钢的抗拉强度和屈服强度,降低了实验钢的应变硬化指数和总延伸率.若不采用二次淬火则会使实验钢的塑性大大提高,综合力学性能较高.展开更多
文摘淬火-分配(Quenching and partitioning,Q&P)钢是淬火和分配复合作用的结果,淬火得到高强度马氏体基体,分配稳定残留奥氏体提高塑性。本工作通过采用具有不同冷速的淬火介质———油、13%PAG和HX-2000淬火,研究了Q&P工艺中淬火冷速对中碳钢组织及性能的影响,并探讨了不同分配温度对碳分配过程的影响。结果表明,淬火快速冷却能得到高碳马氏体组织,有利于促进分配过程中马氏体向残留奥氏体的碳扩散,提高碳分配程度,并且随着淬火冷速的增加,马氏体有效晶粒尺寸减小、马氏体组织细化、位错密度增加,从而使中碳钢得到优异的强度和塑性。高温分配能减弱马氏体和残留奥氏体间的碳不均匀性,促进碳从马氏体向残留奥氏体中扩散,起到稳定残留奥氏体的作用,提高中碳钢的断后伸长率。当采用13%PAG淬火、320℃分配时,中碳钢伸长率为10.34%~10.37%,强塑积能达到18.94~19.21 GPa%,表现出更高的强塑性匹配。
文摘设计了一种中碳中锰Q&P(Quenching and partitioning)钢,基于热力学平衡理论计算分析了其相变过程,通过扫描电镜(SEM)、背散射电子衍射(EBSD)和透射电镜(TEM)研究了实验钢经不同热处理后的微观组织,测试了其力学性能,并采用X射线衍射仪(XRD)进一步分析了拉伸断裂前后残留奥氏体含量的演变规律。结果表明:室温下实验钢微观组织为板条状马氏体和弥散分布的残留奥氏体;残留奥氏体主要存在于马氏体板条之间和原始奥氏体晶界处;随配分时间延长,抗拉强度逐渐降低,延伸率呈现升高趋势;试样拉断后,断口处残留奥氏体含量在3.5%~4.5%之间,明显低于拉伸前的含量(6.94%~10.78%),说明大部分残留奥氏体在拉伸过程中发生了TRIP效应,提高了实验钢的塑性。
文摘主要对0.19C-1.52Si-1.53Mn-0.14Al-0.048Nb和0.19C-1.52Si-1.48Mn-0.15Al两种成分的钢进行了Q&P(quenching and partitioning)工艺处理,并研究二次淬火对Q&P钢组织性能的影响.结果表明:Nb的加入能够起到细晶强化和沉淀强化的效果,提高Q&P钢的综合性能.强塑积最高可达到25 190 MPa.%.二次淬火能够提高实验钢最终的马氏体含量,并大大提高钢的抗拉强度和屈服强度,降低了实验钢的应变硬化指数和总延伸率.若不采用二次淬火则会使实验钢的塑性大大提高,综合力学性能较高.