The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack prob...The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack problem. QAA takes the advantage of the principles in quantum computing, such as qubit, quantum gate, and quantum superposition of states, to get more probabilistic-based status with small colonies. By updating the pheromone in the ant algorithm and rotating the quantum gate, the algorithm can finally reach the optimal solution. The detailed steps to use QAA are presented, and by solving series of test cases of classical knapsack problems, the effectiveness and generality of the new algorithm are validated.展开更多
Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it i...Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it is necessary to investigate some fast and effective approximate algorithms. A novel and enhanced quantum-inspired shuffled frog leaping based minimum attribute reduction algorithm (QSFLAR) is proposed. Evolutionary frogs are represented by multi-state quantum bits, and both quantum rotation gate and quantum mutation operators are used to exploit the mechanisms of frog population diversity and convergence to the global optimum. The decomposed attribute subsets are co-evolved by the elitist frogs with a quantum-inspired shuffled frog leaping algorithm. The experimental results validate the better feasibility and effectiveness of QSFLAR, comparing with some representa- tive algorithms. Therefore, QSFLAR can be considered as a more competitive algorithm on the efficiency and accuracy for minimum attribute reduction.展开更多
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici...Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem.展开更多
将正交试验设计引入到克隆选择操作中,设计出基于正交试验的克隆选择操作(clonal selection operation based on orthogonal experiment design,简称CSO-OED),并将其加入到典型的克隆选择算法中,设计出并联式的CSO+CSO-OED(Ⅰ)算法和串...将正交试验设计引入到克隆选择操作中,设计出基于正交试验的克隆选择操作(clonal selection operation based on orthogonal experiment design,简称CSO-OED),并将其加入到典型的克隆选择算法中,设计出并联式的CSO+CSO-OED(Ⅰ)算法和串联式的CSO+CSO-OED(Ⅱ)算法.将新设计的算法用于9个经典的测试函数和6个复杂的测试函数进行对比测试,实验结果表明,CSO-OED能够有效地保持种群的多样性,避免算法不成熟收敛.CSO+CSO-OED(Ⅰ)和CSO+CSO-OED(Ⅱ)将全局搜索和局部搜索分开进行优化,对比实验表明,这种搜索策略不但能够保证算法的收敛性,还能有效地提高搜索解的精度,增强算法的鲁棒性.展开更多
分析了传统的用于多峰函数优化问题的小生境遗传算法的特点和不足,基于免疫系统中的克隆选择原理,运用记忆算子、抑制算子和重组算子等技术对克隆选择算法进行了改造,并引入一种新的小生境技术,提出了一种解决多峰函数优化问题的小生境...分析了传统的用于多峰函数优化问题的小生境遗传算法的特点和不足,基于免疫系统中的克隆选择原理,运用记忆算子、抑制算子和重组算子等技术对克隆选择算法进行了改造,并引入一种新的小生境技术,提出了一种解决多峰函数优化问题的小生境克隆选择算法。最后,实现了该算法对单无人作战飞机(unmanned combat air vehicle,UCAV)多航路规划这类多峰函数优化问题的优化仿真,结果表明该算法简单有效。展开更多
基金supported by the National Natural Science Foundation of China(70871081)the Shanghai Leading Academic Discipline Project(S30504).
文摘The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack problem. QAA takes the advantage of the principles in quantum computing, such as qubit, quantum gate, and quantum superposition of states, to get more probabilistic-based status with small colonies. By updating the pheromone in the ant algorithm and rotating the quantum gate, the algorithm can finally reach the optimal solution. The detailed steps to use QAA are presented, and by solving series of test cases of classical knapsack problems, the effectiveness and generality of the new algorithm are validated.
基金supported by the National Natural Science Foundation of China(6113900261171132)+4 种基金the Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11 0219)the Natural Science Foundation of Jiangsu Education Department(12KJB520013)the Applying Study Foundation of Nantong(BK2011062)the Open Project Program of State Key Laboratory for Novel Software Technology,Nanjing University(KFKT2012B28)the Natural Science Pre-Research Foundation of Nantong University(12ZY016)
文摘Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it is necessary to investigate some fast and effective approximate algorithms. A novel and enhanced quantum-inspired shuffled frog leaping based minimum attribute reduction algorithm (QSFLAR) is proposed. Evolutionary frogs are represented by multi-state quantum bits, and both quantum rotation gate and quantum mutation operators are used to exploit the mechanisms of frog population diversity and convergence to the global optimum. The decomposed attribute subsets are co-evolved by the elitist frogs with a quantum-inspired shuffled frog leaping algorithm. The experimental results validate the better feasibility and effectiveness of QSFLAR, comparing with some representa- tive algorithms. Therefore, QSFLAR can be considered as a more competitive algorithm on the efficiency and accuracy for minimum attribute reduction.
文摘Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem.
文摘将正交试验设计引入到克隆选择操作中,设计出基于正交试验的克隆选择操作(clonal selection operation based on orthogonal experiment design,简称CSO-OED),并将其加入到典型的克隆选择算法中,设计出并联式的CSO+CSO-OED(Ⅰ)算法和串联式的CSO+CSO-OED(Ⅱ)算法.将新设计的算法用于9个经典的测试函数和6个复杂的测试函数进行对比测试,实验结果表明,CSO-OED能够有效地保持种群的多样性,避免算法不成熟收敛.CSO+CSO-OED(Ⅰ)和CSO+CSO-OED(Ⅱ)将全局搜索和局部搜索分开进行优化,对比实验表明,这种搜索策略不但能够保证算法的收敛性,还能有效地提高搜索解的精度,增强算法的鲁棒性.
文摘分析了传统的用于多峰函数优化问题的小生境遗传算法的特点和不足,基于免疫系统中的克隆选择原理,运用记忆算子、抑制算子和重组算子等技术对克隆选择算法进行了改造,并引入一种新的小生境技术,提出了一种解决多峰函数优化问题的小生境克隆选择算法。最后,实现了该算法对单无人作战飞机(unmanned combat air vehicle,UCAV)多航路规划这类多峰函数优化问题的优化仿真,结果表明该算法简单有效。