期刊文献+
共找到6,101篇文章
< 1 2 250 >
每页显示 20 50 100
An estimation method for direct maintenance cost of aircraft components based on particle swarm optimization with immunity algorithm 被引量:3
1
作者 吴静敏 左洪福 陈勇 《Journal of Central South University》 SCIE EI CAS 2005年第S2期95-101,共7页
A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune se... A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network. 展开更多
关键词 aircraft design maintenance COST particle swarm optimization IMMUNITY algorithm PREDICT
在线阅读 下载PDF
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:16
2
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (PSO) fuzzy logic control genetic algorithms
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
3
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
4
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
An extended particle swarm optimization algorithm based on coarse-grained and fine-grained criteria and its application 被引量:2
5
作者 李星梅 张立辉 +1 位作者 乞建勋 张素芳 《Journal of Central South University of Technology》 EI 2008年第1期141-146,共6页
In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using... In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using the information in the iterative process of more particles was analyzed and the optimal system of particle swarm algorithm was improved. The extended particle swarm optimization algorithm (EPSO) was proposed. The coarse-grained and fine-grained criteria that can control the selection were given to ensure the convergence of the algorithm. The two criteria considered the parameter selection mechanism under the situation of random probability. By adopting MATLAB7.1, the extended particle swarm optimization algorithm was demonstrated in the resource leveling of power project scheduling. EPSO was compared with genetic algorithm (GA) and common PSO, the result indicates that the variance of the objective function of resource leveling is decreased by 7.9%, 18.2%, respectively, certifying the effectiveness and stronger global convergence ability of the EPSO. 展开更多
关键词 particle swarm extended particle swarm optimization algorithm resource leveling
在线阅读 下载PDF
Improved wavelet neural network combined with particle swarm optimization algorithm and its application 被引量:1
6
作者 李翔 杨尚东 +1 位作者 乞建勋 杨淑霞 《Journal of Central South University of Technology》 2006年第3期256-259,共4页
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin... An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function. 展开更多
关键词 artificial neural network particle swarm optimization algorithm short-term load forecasting WAVELET curse of dimensionality
在线阅读 下载PDF
UAV penetration mission path planning based on improved holonic particle swarm optimization 被引量:4
7
作者 LUO Jing LIANG Qianchao LI Hao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期197-213,共17页
To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on impr... To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on improved holonic particle swarm optimization(IHPSO). Firstly, the requirements of terrain threat, radar detection, and penetration time in the process of UAV penetration are quantified. Regarding radar threats, a radar echo analysis method based on radar cross section(RCS)and the spatial situation is proposed to quantify the concealment of UAV penetration. Then the structure-particle swarm optimization(PSO) algorithm is improved from three aspects.First, the conversion ability of the search strategy is enhanced by using the system clustering method and the information entropy grouping strategy instead of random grouping and constructing the state switching conditions based on the fitness function.Second, the unclear setting of iteration numbers is addressed by using particle spacing to create the termination condition of the algorithm. Finally, the trajectory is optimized to meet the intended requirements by building a predictive control model and using the IHPSO for simulation verification. Numerical examples show the superiority of the proposed method over the existing PSO methods. 展开更多
关键词 path planning network radar holonic structure particle swarm algorithm(PSO) predictive control model
在线阅读 下载PDF
Bacterial graphical user interface oriented by particle swarm optimization strategy for optimization of multiple type DFACTS for power quality enhancement in distribution system 被引量:3
8
作者 M.Mohammadi M.Montazeri S.Abasi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期569-588,共20页
This study proposes a graphical user interface(GUI) based on an enhanced bacterial foraging optimization(EBFO) to find the optimal locations and sizing parameters of multi-type DFACTS in large-scale distribution syste... This study proposes a graphical user interface(GUI) based on an enhanced bacterial foraging optimization(EBFO) to find the optimal locations and sizing parameters of multi-type DFACTS in large-scale distribution systems.The proposed GUI based toolbox,allows the user to choose between single and multiple DFACTS allocations,followed by the type and number of them to be allocated.The EBFO is then applied to obtain optimal locations and ratings of the single and multiple DFACTS.This is found to be faster and provides more accurate results compared to the usual PSO and BFO.Results obtained with MATLAB/Simulink simulations are compared with PSO,BFO and enhanced BFO.It reveals that enhanced BFO shows quick convergence to reach the desired solution there by yielding superior solution quality.Simulation results concluded that the EBFO based multiple DFACTS allocation using DSSSC,APC and DSTATCOM is preferable to reduce power losses,improve load balancing and enhance voltage deviation index to 70%,38% and 132% respectively and also it can improve loading factor without additional power loss. 展开更多
关键词 distribution system power quality single type and multiple type DFACTS BFO algorithm particle swarm optimization(PSO)
在线阅读 下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
9
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
在线阅读 下载PDF
Momentum particle swarm optimizer
10
作者 Liu Yu Qin Zheng +1 位作者 Wang Xianghua He Xingshi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期941-946,共6页
The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the orig... The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the original particle swarm optimizer to resolve this problem. Furthermore, in order to accelerate convergence, a new strategy about updating velocities is given. The resulting approach is mromentum-PSO which guarantees that particles are never beyond predefined search space without checking boundary in every iteration. In addition, linearly decreasing wight PSO (LDW-PSO) equipped with a boundary checking strategy is also discussed, which is denoted as LDWBC-PSO. LDW-PSO, LDWBC-PSO and momentum-PSO are compared in optimization on five test functions. The experimental results show that in some special cases LDW-PSO finds invalid solutions and LDWBC-PSO has poor performance, while momentum-PSO not only exhibits good performance but also reduces computational cost for updating velocities. 展开更多
关键词 evolutionary computation particle swarm optimization optimization algorithm.
在线阅读 下载PDF
Multi-platform collaborative MRC-PSO algorithm for anti-ship missile path planning
11
作者 LIU Gang GUO Xinyuan +2 位作者 HUANG Dong CHEN Kezhong LI Wu 《Journal of Systems Engineering and Electronics》 2025年第2期494-509,共16页
To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO al... To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality. 展开更多
关键词 anti-ship missiles multi-platform collaborative path planning particle swarm optimization(PSO)algorithm
在线阅读 下载PDF
An immune-swarm intelligence based algorithm for deterministic coverage problems of wireless sensor networks 被引量:1
12
作者 刘继忠 王保磊 +1 位作者 敖俊宇 Q.M.Jonathan WU 《Journal of Central South University》 SCIE EI CAS 2012年第11期3154-3161,共8页
A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the... A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters. 展开更多
关键词 wireless sensor network deterministic area coverage immune-swarm algorithm particle swarm optimization artificialimmune system
在线阅读 下载PDF
基于视觉因素的地铁调度人机界面优化设计评价 被引量:1
13
作者 李博 宣金鸽 +2 位作者 薛艳敏 余隋怀 王娟 《图学学报》 北大核心 2025年第1期200-210,共11页
为了优化地铁调度员的任务绩效。以CATIA构建虚拟人体模型并进行视域等级划分,将调度界面和视域进行栅格化处理并构建人机布局优化模型,调度界面进行模块化处理并分析各模块的重要程度,以粒子群算法为基础引入惯性权重得出最优布局方案... 为了优化地铁调度员的任务绩效。以CATIA构建虚拟人体模型并进行视域等级划分,将调度界面和视域进行栅格化处理并构建人机布局优化模型,调度界面进行模块化处理并分析各模块的重要程度,以粒子群算法为基础引入惯性权重得出最优布局方案。以人机界面信息显示优化策略为准则,对人机界面的色彩、字体、图标进行优化设计,搭建眼动实验平台,选用AOI首次注视时间、AOI注视持续时间、AOI注视次数和AOI平均反应时及热点图作为人机界面任务绩效的判断指标。得到结果为:①人机布局优化模型布局设计将调度员注意力提升52%;②AOI首次注视时间、AOI注视持续时间和AOI平均反应时P值均小于0.05,具有显著性差异;优化后的调度界面AOI平均反应时提升50%;③AOI注视次数虽P值大于0.05,在统计学上无意义,但数据对比分析具有现实意义;④热点图符合视域的等级划分,眼动轨迹主要集中在最佳视域区域。通过构建的人机布局优化模型得出的布局方案和信息显示优化策略进行人机界面设计,有助于促使调度员注意力合理分配,提升调度员的任务绩效,为人机界面优化设计提供参考。 展开更多
关键词 地铁调度员 人机界面 眼动实验 粒子群算法
在线阅读 下载PDF
车网互动充放电站的选址定容规划策略 被引量:1
14
作者 李滨 韦寿浦 +2 位作者 白晓清 陈碧云 阳育德 《电力系统及其自动化学报》 北大核心 2025年第2期38-47,57,共11页
为解决车网互动(vehicle-to-grid,V2G)充放电站的选址定容规划问题,基于电动汽车的时空特性,将V2G充放电站的规划与配电网调度相结合,建立V2G充放电站选址定容双层规划模型。上层模型利用现有充电桩升级改造和V2G对线路负载的影响,从电... 为解决车网互动(vehicle-to-grid,V2G)充放电站的选址定容规划问题,基于电动汽车的时空特性,将V2G充放电站的规划与配电网调度相结合,建立V2G充放电站选址定容双层规划模型。上层模型利用现有充电桩升级改造和V2G对线路负载的影响,从电网投资和运行的经济性角度对充放电站进行优化选址;下层构建多目标优化调度模型以实现电动汽车充放电优化调度,并将最优调度情况返回给上层实现优化定容。最后利用双层迭代混合粒子群算法求解。IEEE 33节点算例结果验证了所提规划策略的有效性。 展开更多
关键词 电动汽车(EV) 充放电站规划 双层规划 充放电优化 粒子群优化算法
在线阅读 下载PDF
基于自适应等效能耗最小的燃料电池船舶能量管理策略 被引量:1
15
作者 许晓彦 曹伟 韩冰 《太阳能学报》 北大核心 2025年第3期108-115,共8页
为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储... 为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储能系统最终电量和初始电量误差最小为目标函数,求解燃料电池系统和储能系统的最优运行轨迹;在下层优化中,建立等效因子的优化模型,提取最优等效因子的分布。然后,建立以系统状态参数为输入、等效因子为输出的神经网络模型。利用最优的等效因子作为训练样本,对神经网络模型进行训练。最后,将神经网络模型与等效能耗最小策略相结合,可实现等效因子的实时调整。在Matlab/Simulink中搭建船舶混合能源系统的仿真模型,对基于自适应等效能耗最小的能量管理策略进行验证。仿真结果表明,与基于恒定等效因子的等效能耗最小策略相比,储能系统的最终电量更接近初始值,氢气的总消耗量降低1.98%。 展开更多
关键词 燃料电池船 能量管理策略 神经网络 等效因子 多种群自适应协同的粒子群优化算法
在线阅读 下载PDF
区域时变路网下的低碳冷链配送路径优化研究 被引量:1
16
作者 杨立君 丁政罡 +3 位作者 左大发 钟双喜 张驰 石佳悦 《包装工程》 北大核心 2025年第7期212-223,共12页
目的优化在区域时变路网下的生鲜冷链配送路径,降低企业的配送成本,提高配送效率。方法针对冷链配送中的时效性和温控管理要求,构建结合道路拥堵状况的区域时变车辆行驶函数,建立基于生鲜冷链配送成本的优化模型;研究采用改进的粒子群算... 目的优化在区域时变路网下的生鲜冷链配送路径,降低企业的配送成本,提高配送效率。方法针对冷链配送中的时效性和温控管理要求,构建结合道路拥堵状况的区域时变车辆行驶函数,建立基于生鲜冷链配送成本的优化模型;研究采用改进的粒子群算法(PSO-GA)进行求解,并比较区域时变模型、时变模型、静态模型的优化结果。结果在求解精度和效率方面,PSO-GA均显著优于粒子群算法(PSO)和遗传算法(GA);在总配送成本方面,PSO-GA比PSO降低2.0%,比GA降低4.2%;在碳排放成本方面,PSO-GA比PSO降低3.9%,比GA降低11.2%。结论模型在区域复杂拥堵环境下成功降低配送成本和碳排放成本,能够较好地仿真现实道路交通配送现状,具有很好的实际意义。 展开更多
关键词 冷链物流 配送路径优化 时变速度 粒子群算法 碳排放
在线阅读 下载PDF
基于粒子群优化算法的东构造结滑坡清单建立与侵蚀速率估算 被引量:1
17
作者 耿豪鹏 徐子怡 +1 位作者 郭宇 张建 《水土保持学报》 北大核心 2025年第2期338-347,共10页
[目的]构建喜马拉雅东构造结地区大范围的多时相滑坡清单,量化滑坡侵蚀速率,揭示滑坡过程在该区域的地貌学意义。[方法]基于粒子群优化算法(particle swarm optimization,PSO)进行遥感影像归一化植被指数(normalized difference vegetat... [目的]构建喜马拉雅东构造结地区大范围的多时相滑坡清单,量化滑坡侵蚀速率,揭示滑坡过程在该区域的地貌学意义。[方法]基于粒子群优化算法(particle swarm optimization,PSO)进行遥感影像归一化植被指数(normalized difference vegetation index,NDVI)的变化检测,构建1987-2021年东构造结地区的多时相滑坡清单;根据滑坡面积-体积经验公式计算该区域的滑坡侵蚀速率;结合气候和地形等参数,探讨滑坡过程的诱发因素。[结果]研究区1987-2021年共识别滑坡1 323次,其中2017-2021年的滑坡数量最多,共389次;滑坡主要分布在雅鲁藏布江大拐弯附近的河谷两侧;研究区滑坡侵蚀速率为0~76.06 mm/a,平均值为0.44 mm/a,呈以雅鲁藏布江大拐弯段为中心向四周逐渐降低的变化趋势;滑坡侵蚀速率与地质尺度岩体的剥露速率及千年尺度流域平均侵蚀速率相近;研究区滑坡的发生与降雨过程和地震活动相关,主要发育在南向坡面上,并在海拔1 500~3 000 m和坡度35°~45°聚集。[结论]滑坡是东构造结地区的主导侵蚀过程;降雨受迎风坡效应的影响在南向坡面富集,驱动该坡向上滑坡的集中分布。降水促进河流下切,以陡化边坡的方式诱发滑坡。 展开更多
关键词 粒子群优化算法 多时相滑坡清单 喜马拉雅东构造结 滑坡侵蚀速率 地貌演化
在线阅读 下载PDF
基于粒子群算法的纯电动商用车转矩分配策略 被引量:1
18
作者 田韶鹏 方正 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期1-8,27,共9页
针对纯电动商用车采用双电动机驱动时存在的转矩分配问题,提出基于粒子群算法的模糊控制策略.首先在Simulink/Stateflow软件中搭建整车动力系统物理模型,以粒子群算法为基础,进行整车转矩分配.由于计算量大,无法运用于实车,故根据粒子... 针对纯电动商用车采用双电动机驱动时存在的转矩分配问题,提出基于粒子群算法的模糊控制策略.首先在Simulink/Stateflow软件中搭建整车动力系统物理模型,以粒子群算法为基础,进行整车转矩分配.由于计算量大,无法运用于实车,故根据粒子群算法的结果,结合传统项目经验,设计一个参数实时调节模糊控制器来进行转矩分配.该方法运行速度快,且基本达到粒子群全局优化的效果.验证与分析结果表明:与原车单电动机动力系统相比,采用该方法的双电动机动力系统能量消耗减少了12.08%;在双电动机动力系统下,该方法与平均分配控制策略相比,电动机总能量损失降低了13.09%. 展开更多
关键词 纯电动商用车 双电动机驱动 转矩分配 粒子群算法 模糊控制策略
在线阅读 下载PDF
基于粒子群和蜂群算法的无人机路径规划 被引量:2
19
作者 刘晓芬 吴传淑 +1 位作者 张紫瑞 陈珏先 《兵工自动化》 北大核心 2025年第4期107-112,共6页
针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径... 针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径,使得到的路径更加平滑,无人机机动转弯相对更少。结果表明:该研究提高了无人机飞行的安全性和高效性,便于无人机的飞行控制跟踪实现。 展开更多
关键词 路径规划 B样条 粒子群算法 人工蜂群算法 飞行控制
在线阅读 下载PDF
改进PSO-PH-RRT^(*)算法在智能车路径规划中的应用 被引量:1
20
作者 蒋启龙 许健 《东北大学学报(自然科学版)》 北大核心 2025年第3期12-19,共8页
在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(... 在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(*))算法.该算法在基于均匀概率的快速拓展随机树(PHRRT^(*))算法的基础上,利用粒子群算法更新方向概率作为随机树节点的速度方向,从而改善了节点的位置更新策略,并将节点到目标向量的距离和轨迹平滑度作为粒子群算法的适应度函数.最后在多种障碍环境下进行仿真.结果表明,PSO-PH-RRT^(*)算法能大大减少迭代时间成本,同时改善路径长度和平滑度. 展开更多
关键词 路径规划 RRT算法 改进粒子群优化算法 目标向量 代价函数 适应度函数
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部