期刊文献+
共找到251篇文章
< 1 2 13 >
每页显示 20 50 100
Learning algorithm and application of quantum BP neural networks based on universal quantum gates 被引量:26
1
作者 Li Panchi Li Shiyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期167-174,共8页
A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is... A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is composed of input, phase rotation, aggregation, reversal rotation and output. In this model, the input is described by qubits, and the output is given by the probability of the state in which (1) is observed. The phase rotation and the reversal rotation are performed by the universal quantum gates. Secondly, the quantum BP neural networks model is constructed, in which the output layer and the hide layer are quantum neurons. With the application of the gradient descent algorithm, a learning algorithm of the model is proposed, and the continuity of the model is proved. It is shown that this model and algorithm are superior to the conventional BP networks in three aspects: convergence speed, convergence rate and robustness, by two application examples of pattern recognition and function approximation. 展开更多
关键词 quantum computing universal quantum gate quantum neuron quantum neural networks
在线阅读 下载PDF
Application of quantum neural networks in localization of acoustic emission 被引量:6
2
作者 Aidong Deng Li Zhao Wei Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期507-512,共6页
Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to ca... Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more. 展开更多
关键词 acoustic emission(AE) LOCALIZATION quantum genetic algorithm(QGA) back propagation(BP) neural network.
在线阅读 下载PDF
Backflow Transformation for A=3 Nuclei with Artificial Neural Networks
3
作者 YANG Yilong ZHAO Pengwei 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第4期673-678,共6页
A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artif... A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artificial neural networks.With this newly developed wave function,variational Monte Carlo calculations were carried out for3H and3He nuclei starting from a nuclear Hamiltonian based on the leadingorder pionless effective field theory.The obtained ground-state energy and charge radii were successfully benchmarked against the results of the highly-accurate hypersphericalharmonics method.The backflow transformation plays a crucial role in improving the nodal surface of the Slater determinant and,thus,providing accurate ground-state energy. 展开更多
关键词 nuclear many-body problem quantum Monte Carlo artificial neural network backflow transformation
在线阅读 下载PDF
基于角度-振幅混合编码的量子神经网络及其应用研究
4
作者 杨帆 程学云 +3 位作者 朱鹏程 姜一博 顾晖 管致锦 《电子科技大学学报》 北大核心 2025年第5期789-800,共12页
传统量子神经网络与自注意机制结合的模型需消耗较高的量子位资源,针对其在当前NISQ设备上运行效率低和设计复杂性高的问题,提出了一种混合编码方式,将数据集特征通过特定的方式嵌入量子态中,从而实现角度编码与振幅编码的有效混合;基... 传统量子神经网络与自注意机制结合的模型需消耗较高的量子位资源,针对其在当前NISQ设备上运行效率低和设计复杂性高的问题,提出了一种混合编码方式,将数据集特征通过特定的方式嵌入量子态中,从而实现角度编码与振幅编码的有效混合;基于该编码方法设计出一种结构独特的双环Ansatz,借鉴自注意机制中的分而治之思想,构建出具备更高表现力的量子神经网络。在鸢尾花分类任务中训练损失值收敛于0,证明模型有效捕捉到鸢尾花特征之间的内在联系;在文本分类任务中与已有方法相比,分类精确度平均提升了8.9%,且在保证效果良好的前提下,成功减少了训练参数的数量。基于角度-振幅混合编码的量子神经网络的轻量化和低复杂度特性使其更适用于当前的NISQ设备。 展开更多
关键词 量子神经网络 混合编码 自注意机制 文本分类
在线阅读 下载PDF
由交换测试和相位估计构建的量子神经网络
5
作者 李盼池 刘广硕 《计算机科学与探索》 北大核心 2025年第9期2399-2407,共9页
针对量子计算和神经计算的融合问题,研究了一种基于交换测试和相位估计的量子神经网络模型及算法。提出了一种采用多比特控制的交换测试量子线路,在此基础上结合相位估计提出了一种量子神经元模型。该模型的输入、权重、输出均为量子比... 针对量子计算和神经计算的融合问题,研究了一种基于交换测试和相位估计的量子神经网络模型及算法。提出了一种采用多比特控制的交换测试量子线路,在此基础上结合相位估计提出了一种量子神经元模型。该模型的输入、权重、输出均为量子比特,其中权重比特的相位为模型参数。基于量子神经元构建了量子神经网络模型,并在该模型的输出端执行测量,以获得网络的实值输出。详细设计了与网络模型相关的各种量子线路,根据量子计算理论导出了网络各层的输入输出关系,根据梯度下降算法,详细设计网络参数的调整方法。在经典计算机上,以平面点集识别和手写体数字二分类问题为仿真对象,虽然不能验证量子计算的并行性,但能验证模型的执行效果。仿真结果表明,该模型的分类能力相较于同等参数规模的经典BP神经网络有明显优势,从而揭示出基于多比特交换测试和相位估计方法构建量子神经网络模型的研究方案是有效可行的,可为量子神经网络研究提供一种新思路。 展开更多
关键词 量子线路 交换测试 相位估计 量子神经元 量子神经网络
在线阅读 下载PDF
大模型时代下的汉语自然语言处理研究与探索 被引量:5
6
作者 黄施洋 奚雪峰 崔志明 《计算机工程与应用》 北大核心 2025年第1期80-97,共18页
自然语言处理是实现人机交互的关键步骤,而汉语自然语言处理(Chinese natural language processing,CNLP)是其中的重要组成部分。随着大模型技术的发展,CNLP进入了一个新的阶段,这些汉语大模型具备更强的泛化能力和更快的任务适应性。然... 自然语言处理是实现人机交互的关键步骤,而汉语自然语言处理(Chinese natural language processing,CNLP)是其中的重要组成部分。随着大模型技术的发展,CNLP进入了一个新的阶段,这些汉语大模型具备更强的泛化能力和更快的任务适应性。然而,相较于英语大模型,汉语大模型在逻辑推理和文本理解能力方面仍存在不足。介绍了图神经网络在特定CNLP任务中的优势,进行了量子机器学习在CNLP发展潜力的调查。总结了大模型的基本原理和技术架构,详细整理了大模型评测任务的典型数据集和模型评价指标,评估比较了当前主流的大模型在CNLP任务中的效果。分析了当前CNLP存在的挑战,并对CNLP任务的未来研究方向进行了展望,希望能帮助解决当前CNLP存在的挑战,同时为新方法的提出提供了一定的参考。 展开更多
关键词 汉语自然语言处理 图神经网络 量子机器学习 汉语大模型
在线阅读 下载PDF
一种基于混合量子卷积神经网络的恶意代码检测方法 被引量:1
7
作者 熊其冰 苗启广 +2 位作者 杨天 袁本政 费洋扬 《计算机科学》 北大核心 2025年第3期385-390,共6页
量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测... 量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测模型越来越复杂,参数量越来越大,迫切需要一种高效轻量型的检测模型。为此,设计了一种混合量子卷积神经网络模型,将量子计算融入经典卷积神经网络,以提高模型的计算效率。该模型包含量子卷积层、池化层和经典全连接层。量子卷积层采用低深度强纠缠轻量型的参数化量子线路实现,仅使用两类量子门:量子旋转门Ry和受控非门CNOT(controlled-NOT),并仅使用两量子比特实现卷积计算。池化层基于经典计算和量子计算实现了3种池化方法。在Google TensorFlow Quantum上进行了模拟实验。实验结果显示,所提模型在恶意代码公开数据集DataCon2020和Ember的分类性能(accuracy,F1-score)分别达到了(97.75%,97.71%)和(94.65%,94.78%),均有明显提升。 展开更多
关键词 量子计算 量子机器学习 混合量子卷积神经网络 恶意代码检测
在线阅读 下载PDF
ECG-QGAN:基于量子生成对抗网络的心电图生成式信息系统
8
作者 瞿治国 陈韦龙 +2 位作者 孙乐 刘文杰 张彦春 《计算机研究与发展》 北大核心 2025年第7期1622-1638,共17页
据统计,我国心血管疾病患病人数约达3.3亿,每年因为心血管疾病死亡的人数占总死亡人数的40%.在这种背景下,心脏病辅助诊断系统的发展显得尤为重要,但其开发受限于缺乏不含患者隐私信息和由医疗专家标注的大量心电图(electrocardiogram,E... 据统计,我国心血管疾病患病人数约达3.3亿,每年因为心血管疾病死亡的人数占总死亡人数的40%.在这种背景下,心脏病辅助诊断系统的发展显得尤为重要,但其开发受限于缺乏不含患者隐私信息和由医疗专家标注的大量心电图(electrocardiogram,ECG)临床数据.作为一门新兴学科,量子计算可通过利用量子叠加和纠缠特性,能够探索更大、更复杂的状态空间,进而有利于生成同临床数据一样的高质量和多样化的ECG数据.为此,提出了一种基于量子生成对抗网络(QGAN)的ECG生成式信息系统,简称ECG-QGAN.其中QGAN由量子双向门控循环单元(quantum bidirectional gated recurrent unit,QBiGRU)和量子卷积神经网络(quantum convolutional neural network,QCNN)组成.该系统利用量子的纠缠特性提高生成能力,以生成与现有临床数据一致的ECG数据,从而可以保留心脏病患者的心跳特征.该系统的生成器和判别器分别采用QBiGRU和QCNN,并应用了基于矩阵乘积状态(matrix product state,MPS)和树形张量网络(tree tensor network,TTN)所设计的变分量子电路(variational quantum circuit,VQC),可以使该系统在较少的量子资源下更高效地捕捉ECG数据信息,生成合格的ECG数据.此外,该系统应用了量子Dropout技术,以避免训练过程中出现过拟合问题.最后,实验结果表明,与其他生成ECG数据的模型相比,ECG-QGAN生成的ECG数据具有更高的平均分类准确率.同时它在量子位数量和电路深度方面对当前噪声较大的中尺度量子(noise intermediate scale quantum,NISQ)计算机是友好的. 展开更多
关键词 生成式信息系统 心电图 量子生成对抗网络 量子双向门控循环单元 量子卷积神经网络
在线阅读 下载PDF
基于变分量子电路的量子机器学习算法综述
9
作者 于瑞祺 张鑫云 任爽 《计算机研究与发展》 北大核心 2025年第4期821-851,共31页
随着数据规模的增加,机器学习的重要性与影响力随之增大.借助量子力学的原理能够实现量子计算,结合量子计算和机器学习形成的量子机器学习算法对经典机器学习算法理论上能够产生指数级的加速优势.部分经典算法的量子版本已经被提出,有... 随着数据规模的增加,机器学习的重要性与影响力随之增大.借助量子力学的原理能够实现量子计算,结合量子计算和机器学习形成的量子机器学习算法对经典机器学习算法理论上能够产生指数级的加速优势.部分经典算法的量子版本已经被提出,有望解决使用经典计算机难以解决的问题.当前受量子计算硬件所限,可操控的量子比特数目和噪声等因素制约着量子计算机的发展.短期内量子计算硬件难以达到通用量子计算机需要的程度,当前研究重点是获得能够在中等规模含噪声量子(noisy intermediatescale quantum,NISQ)计算设备上运行的算法.变分量子算法是一种混合量子-经典算法,适合应用于当前量子计算设备,是量子机器学习领域的研究热点之一.变分量子电路是一种参数化量子电路,变分量子算法利用其完成量子机器学习任务.变分量子电路也被称为拟设或量子神经网络.变分量子算法框架主要由5个步骤组成:1)根据任务设计损失函数和量子电路结构;2)将经典数据预处理后编码到量子态上,量子数据可以省略编码;3)计算损失函数;4)测量和后处理;5)优化器优化参数.在此背景下,综述了量子计算基础理论与变分量子算法的基础框架,详细介绍了变分量子算法在量子机器学习领域的应用及进展,分别对量子有监督学习、量子无监督学习、量子半监督学习、量子强化学习以及量子电路结构搜索相关模型进行了介绍与对比,对相关数据集及相关模拟平台进行了简要介绍和汇总,最后提出了基于变分量子电路量子机器学习算法所面临的挑战及今后的研究趋势. 展开更多
关键词 量子计算 量子机器学习 变分量子算法 量子神经网络 量子深度学习 量子强化学习
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络
10
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子群优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
多特征和APSO-QNN相结合的语音端点检测算法 被引量:4
11
作者 董胡 《探测与控制学报》 CSCD 北大核心 2017年第4期90-95,共6页
针对传统端点检测算法在多种复杂噪声环境下端点检测正确率低、鲁棒性较弱的问题,提出多特征和加速粒子群优化量子神经网络(APSO-QNN)相结合的端点检测算法。该算法通过提取语音信号的短时能量特征、循环平均幅度差函数特征、频带方差... 针对传统端点检测算法在多种复杂噪声环境下端点检测正确率低、鲁棒性较弱的问题,提出多特征和加速粒子群优化量子神经网络(APSO-QNN)相结合的端点检测算法。该算法通过提取语音信号的短时能量特征、循环平均幅度差函数特征、频带方差特征及美尔频率倒谱系数特征,将这些特征量输入量子神经网络(QNN)进行学习并利用加速粒子群算法对量子神经网络参数进行优化,构建语音端点检测模型,实现对信号的类型的判别。仿真实验结果表明,该方法不仅提升了语音端点检测的正确率,而且降低了虚检率与漏检率,具有较强的抗噪鲁棒性。 展开更多
关键词 端点检测 加速粒子群优化 量子神经网络 正确率 鲁棒性
在线阅读 下载PDF
基于量子卷积神经网络的ARX分组密码区分器
12
作者 秦广雪 李丽莎 《信息网络安全》 北大核心 2025年第3期467-477,共11页
随着量子计算机的发展,量子神经网络技术不断取得新突破。尽管当前量子计算环境受限,但探索量子神经网络的潜在应用对未来科学技术发展具有重要意义。量子卷积神经网络结合量子计算的优势和神经网络强大的特征提取能力,在二分类任务上... 随着量子计算机的发展,量子神经网络技术不断取得新突破。尽管当前量子计算环境受限,但探索量子神经网络的潜在应用对未来科学技术发展具有重要意义。量子卷积神经网络结合量子计算的优势和神经网络强大的特征提取能力,在二分类任务上表现优异。文章提出一种量子卷积神经区分器,数据特征之间不分块而是作为一个整体编码到量子电路,然后训练参数化量子卷积电路。以SPECK-32为例,使用8个量子比特运行5轮的准确率为76.8%,超越了同等资源条件下的经典区分器,并成功运行到第6轮。文章对比了卷积电路和硬件高效Ansatz作为训练电路的量子神经区分器,结果表明前者具有更高的效率。此外,文章所提区分器成功运行了减轮的Speckey、LAX32、SIMON-32和SIMECK-32算法。最后,分析了影响量子卷积神经区分器性能的因素。 展开更多
关键词 量子卷积神经网络 量子计算 分组密码 区分器
在线阅读 下载PDF
基于量子增强混合时空图神经网络的混合储能系统自适应频率调节方法
13
作者 徐鹤勇 郑铁军 +3 位作者 丁圣权 蒙飞 张越 杨家麒 《储能科学与技术》 北大核心 2025年第8期3149-3159,共11页
随着可再生能源的大规模并网,电力系统频率调节面临前所未有的挑战。本研究提出了一种基于量子增强深度强化学习和时空图神经网络(quantum-enhanced deep reinforcement learning and spatio-temporal graph neural networks,QE-DRL-ST-... 随着可再生能源的大规模并网,电力系统频率调节面临前所未有的挑战。本研究提出了一种基于量子增强深度强化学习和时空图神经网络(quantum-enhanced deep reinforcement learning and spatio-temporal graph neural networks,QE-DRL-ST-GNN)的混合储能系统自适应频率调节方法,旨在提高多时间尺度下的电网频率调节性能。该方法创新性地将量子计算与深度强化学习和图神经网络相结合,克服了传统方法在处理高维状态空间和复杂时空依赖性方面的局限性。QE-DRL-ST-GNN采用量子状态编码来表示系统状态,利用量子图的卷积提取时空特征,并通过量子变分算法优化强化学习策略。此外,本研究还设计了一种自适应量子电路生成机制,可以根据系统的动态特性自动调整量子电路结构。案例分析结果表明,与传统的量子增强深度强化学习(quantum-enhanced deep reinforcement learning,QE-DRL)方法相比,QE-DRL-ST-GNN方法在极端情况下频率偏差控制在0.05 Hz,而传统DRL方法为0.15 Hz,提高了66.67%;在调节时间方面,QE-DRL-ST-GNN方法在复杂场景中仅需1.67 s,比传统DRL方法缩短47%;与传统DRL方法的83%相比,QE-DRL-ST-GNN方法在极端情况下提高了13%。 展开更多
关键词 混合储能调频 量子增强学习 自适应控制 多时间尺度协调 图神经网络 混合量子经典控制
在线阅读 下载PDF
轻量化量子激光通信跟踪系统
14
作者 于帅北 曹艳波 +2 位作者 徐彩前 王芳 孙景旭 《光通信技术》 北大核心 2025年第4期72-76,共5页
为了提升自由空间卫星量子激光通信地面终端的跟踪精度并实现轻量化设计,设计了一种基于双探测器复合轴跟踪技术的轻量化量子激光通信跟踪系统。该系统采用T型铝合金跟踪架和碳化硅主镜结构,结合粗-精跟踪分级控制策略,通过压电陶瓷快... 为了提升自由空间卫星量子激光通信地面终端的跟踪精度并实现轻量化设计,设计了一种基于双探测器复合轴跟踪技术的轻量化量子激光通信跟踪系统。该系统采用T型铝合金跟踪架和碳化硅主镜结构,结合粗-精跟踪分级控制策略,通过压电陶瓷快反镜补偿残余误差,并引入智能调参比例积分微分(PID)控制算法优化参数。实验结果表明:系统在星地外场测试中,粗跟踪精度标准差为4 arcsec(方位轴)和6.3 arcsec(俯仰轴),精跟踪闭环后综合误差标准差降至1.4 arcsec(方位轴)和1.2 arcsec(俯仰轴),同时系统重量较传统设计减轻50%。 展开更多
关键词 量子激光通信 复合轴控制 自动调参 比例积分微分控制 主元分析神经网络
在线阅读 下载PDF
基于多源信息融合告警的微电网故障定位方法研究
15
作者 杨志淳 李牧远 +3 位作者 韩佶 杨帆 沈煜 闵怀东 《电测与仪表》 北大核心 2025年第6期45-55,共11页
针对故障诊断数据来源单一导致结果抗噪性和鲁棒性差问题,文章提出一种融合多源告警信息的微电网继电保护故障定位方法。基于对称分量法对微电网故障进行建模,通过求解正、负序网络微分方程,实现对短路故障的特性分析。采用相似性计算... 针对故障诊断数据来源单一导致结果抗噪性和鲁棒性差问题,文章提出一种融合多源告警信息的微电网继电保护故障定位方法。基于对称分量法对微电网故障进行建模,通过求解正、负序网络微分方程,实现对短路故障的特性分析。采用相似性计算对数据进行处理并进行可视化,通过卷积神经网络对故障信息进行辨识,实现告警信息智能生成。采用开关函数法对多源告警信息进行加权融合,并采用改进二进制量子粒子群算法对故障模型进行求解。最后,在改进IEEE 33系统中进行了算例分析,结果表明,所提方法能够准确生成故障告警信息并快速定位故障,且在多点信息畸变下仍具有较高的定位精度效果。 展开更多
关键词 故障定位 微电网故障告警 多源信息融合 二进制量子粒子群 卷积神经网络
在线阅读 下载PDF
基于BP神经网络的测量设备无关协议参数预测 被引量:2
16
作者 周江平 周媛媛 +1 位作者 周学军 李洁琼 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第4期611-616,共6页
针对传统参数优化方法计算开销大,不能满足实时性要求高、计算量大等应用场景的问题,结合当今主流的机器学习方法,提出了一种改进的基于BP神经网络的参数优化方法,利用本地搜索算法的数据训练网络并对参数进行预测,替代传统的查找算法,... 针对传统参数优化方法计算开销大,不能满足实时性要求高、计算量大等应用场景的问题,结合当今主流的机器学习方法,提出了一种改进的基于BP神经网络的参数优化方法,利用本地搜索算法的数据训练网络并对参数进行预测,替代传统的查找算法,从而获得更好的实时性和更低的计算复杂度,随后与基于随机森林和XGBoost的方法进行了比较。仿真结果表明,BP神经网络预测所得各参数的均方误差数量级为10^(-6)或更小,由该参数计算所得密钥生成率与最优密钥生成率比值的均值为0.998 8,且该应用中BP神经网络相对随机森林和XGBoost具有更好的预测性能。 展开更多
关键词 量子光学 量子密钥分发 BP神经网络 参数优化 测量设备无关
在线阅读 下载PDF
最简结构神经网络的量子态估计及其性能对比
17
作者 丛爽 李友志 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第12期2401-2407,共7页
本文提出并设计两种具有最简结构的前向神经网络,来高精度实现对量子态密度矩阵的估计.训练出具有函数逼近功能的反向传播(BP)神经网络和径向基函数(RBF)网络进行量子密度矩阵估计的应用.根据量子态密度矩阵与量子系统实验装置的输出测... 本文提出并设计两种具有最简结构的前向神经网络,来高精度实现对量子态密度矩阵的估计.训练出具有函数逼近功能的反向传播(BP)神经网络和径向基函数(RBF)网络进行量子密度矩阵估计的应用.根据量子态密度矩阵与量子系统实验装置的输出测量值之间的关系,建立并构造出训练神经网络的输入/输出样本对;通过对网络的归一化处理,获得满足量子密度矩阵条件的网络输出.分别对2量子位的本征态、叠加态和混合态的估计设计和训练出不同网络,并在给定的性能指标下,与采用深度学习算法的具有两个隐含层的宽度网络(WNN)的量子密度矩阵估计性能进行对比分析.在此基础上,采用RBF神经网络对高量子位密度矩阵进行估计实验.分别在最少隐含层节点数、最少训练样本数、最短训练时间,以及对非样本输入数据的泛化能力方面,通过仿真实验对所设计网络的量子密度矩阵估计的优越性能进行对比研究. 展开更多
关键词 神经网络 量子态估计 结构优化
在线阅读 下载PDF
ACCQPSO:一种改进的量子粒子群优化算法及其应用 被引量:1
18
作者 孙隽丰 李成海 宋亚飞 《信息网络安全》 CSCD 北大核心 2024年第4期574-586,共13页
针对量子粒子群优化算法前期易陷入局部极值点、后期寻优精度不高等问题,文章提出一种自适应交叉算子的混沌量子粒子群优化算法,并将其应用于BP神经网络超参数寻优。首先,利用Logistics映射初始种群为混沌序列进行最优解搜索,增强初始... 针对量子粒子群优化算法前期易陷入局部极值点、后期寻优精度不高等问题,文章提出一种自适应交叉算子的混沌量子粒子群优化算法,并将其应用于BP神经网络超参数寻优。首先,利用Logistics映射初始种群为混沌序列进行最优解搜索,增强初始种群的随机性与遍历性,提高算法寻优能力;然后,通过纵向交叉操作进行种群中个体的信息交换,并引入自适应交叉概率公式,增加种群多样性,提高算法的寻优精度;最后,在实验中,一方面,选取8个函数在高低两个维度进行验证,同时进行Wilcoxon秩和检验分析以及消融实验,验证该算法相较其他算法的有效性;另一方面,通过算法优化BP神经网络应用到网络安全态势预测任务中,实验结果表明该算法收敛速度相较于对比算法有大幅度提升。 展开更多
关键词 量子粒子群优化算法 混沌映射 交叉算子 自适应调整策略 BP神经网络
在线阅读 下载PDF
42CrMo钢精密切削的刀具磨损量预测研究 被引量:1
19
作者 成钢 唐昆 +4 位作者 刘庞中 刘子聪 袁剑平 胡永乐 毛聪 《工具技术》 北大核心 2024年第3期138-143,共6页
针对42CrMo钢精密切削刀具磨损量预测研究小样本、非线性的特点,将量子粒子群算法(QPSO)、卷积神经网络(CNN)及长短期神经网络(LSTM)相结合,构建了QPSO-CNN-LSTM组合预测模型。采用QPSO算法对CNN-LSTM模型的隐藏层单元数、学习率、卷积... 针对42CrMo钢精密切削刀具磨损量预测研究小样本、非线性的特点,将量子粒子群算法(QPSO)、卷积神经网络(CNN)及长短期神经网络(LSTM)相结合,构建了QPSO-CNN-LSTM组合预测模型。采用QPSO算法对CNN-LSTM模型的隐藏层单元数、学习率、卷积核等进行优化,结合CNN网络特征提取能力强、LSTM网络具备记忆能力的特点,对实际加工实验的刀具磨损量进行预测,并通过误差评价指标分析,与CNN、LSTM、BP等单一模型以及PSO-GRNN组合模型进行预测效果对比研究。研究结果表明,本文构建的组合预测模型相对于单一预测模型,其预测值与真实值吻合程度更高;相对于PSO-GRNN组合模型,三种误差评价指标的误差值至少降低了27%,其泛化性和稳定性较好,预测精度与非线性拟合能力更强。 展开更多
关键词 刀具磨损量 组合预测模型 量子粒子群算法优化 卷积神经网络 长短期神经网络
在线阅读 下载PDF
量子模糊信息管理数学模型研究 被引量:1
20
作者 张仕斌 黄晨猗 +4 位作者 李晓瑜 郑方聪 李闯 刘兆林 杨咏熹 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第2期284-290,共7页
为了高效处理大数据所具有的复杂性和不确定问题,将“不确定性问题+直觉模糊集理论+量子计算”交叉融合,构建基于直觉模糊集理论的量子模糊信息管理数学模型。为了验证该模型的可行性、合理性和有效性,设计了不确定性环境下基于参数化... 为了高效处理大数据所具有的复杂性和不确定问题,将“不确定性问题+直觉模糊集理论+量子计算”交叉融合,构建基于直觉模糊集理论的量子模糊信息管理数学模型。为了验证该模型的可行性、合理性和有效性,设计了不确定性环境下基于参数化量子线路的量子模糊神经网络仿真实验。实验结果表明,基于该模型的量子模糊神经网络模型能更客观、准确、全面地反映不确定性问题中各对象所蕴含的知识信息,从而提高算法处理大数据的准确性。 展开更多
关键词 大数据 量子计算 直觉模糊集理论 量子模型信息管理 量子模糊神经网络
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部