We use quantum Monte Carlo simulations to study an S = 1/2 spin model with competing multi-spin interactions. We find a quantum phase transition between a columnar valence-bond solid(cVBS) and a Néel antiferromag...We use quantum Monte Carlo simulations to study an S = 1/2 spin model with competing multi-spin interactions. We find a quantum phase transition between a columnar valence-bond solid(cVBS) and a Néel antiferromagnet(AFM), as in the scenario of deconfined quantum-critical points, as well as a transition between the AFM and a staggered valence-bond solid(sVBS). By continuously varying a parameter, the sVBS–AFM and AFM–cVBS boundaries merge into a direct sVBS–cVBS transition. Unlike previous models with putative deconfined AFM–cVBS transitions, e.g., the standard J–Q model,in our extended J–Q model with competing cVBS and sVBS inducing terms the transition can be tuned from continuous to first-order. We find the expected emergent U(1) symmetry of the microscopically Z4 symmetric cVBS order parameter when the transition is continuous. In contrast, when the transition changes to first-order, the clock-like Z4 fluctuations are absent and there is no emergent higher symmetry. We argue that the confined spinons in the sVBS phase are fracton-like.We also present results for an SU(3) symmetric model with a similar phase diagram. The new family of models can serve as a useful tool for further investigating open questions related to deconfined quantum criticality and its associated emergent symmetries.展开更多
We discuss the concept of typicality of quantum states at quantum-critical points, using projector Monte Carlo simu- lations of an S ---- 1/2 bilayer Heisenberg antiferromagnet as an illustration. With the projection ...We discuss the concept of typicality of quantum states at quantum-critical points, using projector Monte Carlo simu- lations of an S ---- 1/2 bilayer Heisenberg antiferromagnet as an illustration. With the projection (imaginary) time t scaled as t= aLz, L being the system length and z the dynamic critical exponent (which takes the value z = 1 in the bilayer model studied here), a critical point can be identified which asymptotically flows to the correct location and universality class with increasing L, independently of the prefactor a and the initial state. Varying the proportionality factor a and the initial state only changes the cross-over behavior into the asymptotic large-L behavior. In some cases, choosing an optimal factor a may also lead to the vanishing of the leading finite-size corrections. The observation of typicality can be used to speed up simulations of quantum criticality, not only within the Monte Carlo approach but also with other numerical methods where imaginary-time evolution is employed, e.g., tensor network states, as it is not necessary to evolve fully to the ground state but only for sufficiently long times to reach the typicality regime.展开更多
We study the critical scaling and dynamical signatures of fractionalized excitations at two different deconfined quantum critical points(DQCPs)in an S=1/2 spin chain using the time evolution of infinite matrix product...We study the critical scaling and dynamical signatures of fractionalized excitations at two different deconfined quantum critical points(DQCPs)in an S=1/2 spin chain using the time evolution of infinite matrix product states.The scaling of the correlation functions and the dispersion of the conserved current correlations explicitly show the emergence of enhanced continuous symmetries at these DQCPs.The dynamical structure factors in several different channels reveal the development of deconfined fractionalized excitations at the DQCPs.Furthermore,we find an effective spin-charge separation at the DQCP between the ferromagnetic(FM)and valence bond solid(VBS)phases,and identify two continua associated with different types of fractionalized excitations at the DQCP between the X-direction and Z-direction FM phases.Our findings not only provide direct evidence for the DQCP in one dimension but also shed light on exploring the DQCP in higher dimensions.展开更多
One could tune a topological double-Weyl semimetal or a topological triple-Weyl semimetal to become a topologically trivial insulator by opening a band gap.This kind of quantum phase transition is characterized by the...One could tune a topological double-Weyl semimetal or a topological triple-Weyl semimetal to become a topologically trivial insulator by opening a band gap.This kind of quantum phase transition is characterized by the change of certain topological invariant.A new gapless semimetallic state emerges at each topological quantum critical point.Here we perform a renormalization group analysis to investigate the stability of such critical points against perturbations induced by random scalar potential and random vector potential.We find that the quantum critical point between double-Weyl semimetal and band insulator is unstable and can be easily turned into a compressible diffusive metal by any type of weak disorder.The quantum critical point between triple-Weyl semimetal and band insulator flows to a stable strong-coupling fixed point if the system contains a random vector potential merely along the z-axis,but becomes a compressible diffusive metal when other types of disorders exist.展开更多
The quantum critical regime marks a zone in the phase diagram where quantum fluctuation around the critical point plays a significant role at finite temperatures.While it is of great physical interest,simulation of th...The quantum critical regime marks a zone in the phase diagram where quantum fluctuation around the critical point plays a significant role at finite temperatures.While it is of great physical interest,simulation of the quantum critical regime can be difficult on a classical computer due to its intrinsic complexity.Herein,we propose a variational approach,which minimizes the variational free energy,to simulate and locate the quantum critical regime on a quantum computer.The variational quantum algorithm adopts an ansatz by performing an unitary operator on a product of a single-qubit mixed state,in which the entropy can be analytically obtained from the initial state,and thus the free energy can be accessed conveniently.With numeral simulation,using the one-dimensional Kitaev model as a demonstration we show that the quantum critical regime can be identified by accurately evaluating the temperature crossover line.Moreover,the dependencies of both the correlation length and the phase coherence time with temperature are evaluated for the thermal states.Our work suggests a practical way as well as a first step for investigating quantum critical systems at finite temperatures on quantum devices with few qubits.展开更多
The measurements on temperature dependences of magnetic susceptibility χ(T), specific heat C(T), and electrical resistivity ρ(T) were carried out for the antiferromagnetic(AFM)(Ce(1-x)Lax)2Ir3Ge5(0 ≤ x...The measurements on temperature dependences of magnetic susceptibility χ(T), specific heat C(T), and electrical resistivity ρ(T) were carried out for the antiferromagnetic(AFM)(Ce(1-x)Lax)2Ir3Ge5(0 ≤ x ≤ 0.66) system. It was found that the Neel temperature TNdecreases with increasing La content x, and reaches 0 K near a critical content xcr =0.6. A new phase diagram was constructed based on these measurements. A non-Fermi liquid behavior in ρ(T) and a log T relationship in C(T) were found in the samples near xcr, indicating them to be near an AFM quantum critical point(QCP) with strong spin fluctuation. Our finding indicates that(Ce(1-x)Lax)2Ir3Ge5 may be a new platform to search for unconventional superconductivity.展开更多
The magnetic phase diagram of rare-earth perovskite compound,GdScO3,has been investigated by magnetization and heat capacity.The system undergoes an antiferromagnetic phase transition at TN=2.6 K,with an easy axis of ...The magnetic phase diagram of rare-earth perovskite compound,GdScO3,has been investigated by magnetization and heat capacity.The system undergoes an antiferromagnetic phase transition at TN=2.6 K,with an easy axis of magnetization along the a axis.The magnetization measurements show that it exists a spin-flop transition around 0.3 T for the applied field along the a axis.The critical magnetic field for the antiferromagnetic-to-paramagnetic transition is near 3.2 T when temperature approaches zero.By scaling susceptibilities,we presume this point(B=3.2 T,T=0 K)might be a fieldinduced quantum critical point and the magnetic critical fluctuations can even be felt above TN.展开更多
The recent discovery of high-temperature superconductivity in iron-based pnictides (chalcogenides) not only trig- gers tremendous enthusiasm in searching for new superconducting materials, but also opens a new avenu...The recent discovery of high-temperature superconductivity in iron-based pnictides (chalcogenides) not only trig- gers tremendous enthusiasm in searching for new superconducting materials, but also opens a new avenue to the study of the Kondo physics. CeFeAsO is a parent compound of the 1111-type iron-based superconductors. It shows 3d- antiferromagnetic (AFM) ordering below 139 K and 4f-AFM ordering below 4 K. On the other hand, the phosphide CeFePO is a ferromagnetically corelated heavy-fermion (HF) metal with Kondo scale TK 10 K. These properties set up a new platform for research of the interplay among magnetism, Kondo effect, and superconductivity (SC). In this review, we present the recent progress in the study of chemical pressure effect in CeFeAsOl_yFy (y = 0 and 0.05). This P/As-doping in CeFeAsO serves as an effective controlling parameter which leads to two magnetic critical points, Xcl -- 0.4 and Xc2 - 0.92, associated with suppression of 3d and 4f magnetism, respectively. We also observe a turning point of AFM-FM ordering of Ce3+ moment at Xc3 - 0.37. The SC is absent in the phase diagram, which is attributed to the destruction to Cooper pair by Ce-FM fluctuations in the vicinity of Xcl. We continue to investigate CeFeAsl-xPxO0.95Fo.os. With the separation of xcl and xc3, this chemical pressure results in a broad SC region 0〈 x 〈 0.53, while the original HF behavior is driven away by 5% F- doping. Different roles of P and F dopings are addressed, and the interplay between SC and Ce-4f magnetism is also discussed.展开更多
Quantum critical phenomena in the quasi-one-dimensional limit remain an open issue.We report the uniaxial stress effect on the quasi-one-dimensional Kondo lattice CeCo_(2)Ga_(8) by electric transport and AC heat capac...Quantum critical phenomena in the quasi-one-dimensional limit remain an open issue.We report the uniaxial stress effect on the quasi-one-dimensional Kondo lattice CeCo_(2)Ga_(8) by electric transport and AC heat capacity measurements.CeCo_(2)Ga_(8) is speculated to sit in close vicinity but on the quantum-disordered side of a quantum critical point.Upon compressing the c axis,parallel to the Ce-Ce chain,the onset of coherent Kondo effect is enhanced.In contrast,the electronic specific heat diverges more rapidly at low temperature when the intra-chain distance is elongated by compressions along a or b axis.These results suggest that a tensile intra-chain strain(ε_(c)>0)pushes CeCo_(2)Ga_(8) closer to the quantum critical point,while a compressive intra-chain strain(ε_(c)<0)likely causes departure.Our work provides a rare paradigm of manipulation near a quantum critical point in a quasi-1D Kondo lattice by uniaxial stress,and paves the way for further investigations on the unique feature of quantum criticality in the quasi-1D limit.展开更多
The transport property and phase transition for a parallel triple dot device are studied by adopting Wilson's numerical renormalization group technique, focusing on the effects of level spacings between neighboring d...The transport property and phase transition for a parallel triple dot device are studied by adopting Wilson's numerical renormalization group technique, focusing on the effects of level spacings between neighboring dot sites. By keeping dot 2at the half-filled level and tuning the level differences, it is demonstrated that the system transits from local spin quadruplet to triplet and doublet sequently, and three kinds of Kondo peaks at the Fermi surface could be found, which are separated by two Kosterlitz–Thouless type quantum phase transitions and correspond to spin-3/2, spin-1, and spin-1/2 Kondo effect,respectively. To obtain a detailed understanding of these problems, the charge occupation, the spin–spin correlation, the transmission coefficient, and the temperature-dependent magnetic moment are shown, and necessary physical arguments are given.展开更多
基金Project supported by the NSF under Grant No.DMR-1710170 and by a Simons Investigator Grant.
文摘We use quantum Monte Carlo simulations to study an S = 1/2 spin model with competing multi-spin interactions. We find a quantum phase transition between a columnar valence-bond solid(cVBS) and a Néel antiferromagnet(AFM), as in the scenario of deconfined quantum-critical points, as well as a transition between the AFM and a staggered valence-bond solid(sVBS). By continuously varying a parameter, the sVBS–AFM and AFM–cVBS boundaries merge into a direct sVBS–cVBS transition. Unlike previous models with putative deconfined AFM–cVBS transitions, e.g., the standard J–Q model,in our extended J–Q model with competing cVBS and sVBS inducing terms the transition can be tuned from continuous to first-order. We find the expected emergent U(1) symmetry of the microscopically Z4 symmetric cVBS order parameter when the transition is continuous. In contrast, when the transition changes to first-order, the clock-like Z4 fluctuations are absent and there is no emergent higher symmetry. We argue that the confined spinons in the sVBS phase are fracton-like.We also present results for an SU(3) symmetric model with a similar phase diagram. The new family of models can serve as a useful tool for further investigating open questions related to deconfined quantum criticality and its associated emergent symmetries.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11734002 and 11775021)the National Science Foundation(Grant No.DMR-1710170)a Simons Investigator Award
文摘We discuss the concept of typicality of quantum states at quantum-critical points, using projector Monte Carlo simu- lations of an S ---- 1/2 bilayer Heisenberg antiferromagnet as an illustration. With the projection (imaginary) time t scaled as t= aLz, L being the system length and z the dynamic critical exponent (which takes the value z = 1 in the bilayer model studied here), a critical point can be identified which asymptotically flows to the correct location and universality class with increasing L, independently of the prefactor a and the initial state. Varying the proportionality factor a and the initial state only changes the cross-over behavior into the asymptotic large-L behavior. In some cases, choosing an optimal factor a may also lead to the vanishing of the leading finite-size corrections. The observation of typicality can be used to speed up simulations of quantum criticality, not only within the Monte Carlo approach but also with other numerical methods where imaginary-time evolution is employed, e.g., tensor network states, as it is not necessary to evolve fully to the ground state but only for sufficiently long times to reach the typicality regime.
基金Project supported by the National Science Foundation of China(Grant No.12174441)the Fundamental Research Funds for the Central Universities,Chinathe Research Funds of Remnin University of China(Grant No.18XNLG24)。
文摘We study the critical scaling and dynamical signatures of fractionalized excitations at two different deconfined quantum critical points(DQCPs)in an S=1/2 spin chain using the time evolution of infinite matrix product states.The scaling of the correlation functions and the dispersion of the conserved current correlations explicitly show the emergence of enhanced continuous symmetries at these DQCPs.The dynamical structure factors in several different channels reveal the development of deconfined fractionalized excitations at the DQCPs.Furthermore,we find an effective spin-charge separation at the DQCP between the ferromagnetic(FM)and valence bond solid(VBS)phases,and identify two continua associated with different types of fractionalized excitations at the DQCP between the X-direction and Z-direction FM phases.Our findings not only provide direct evidence for the DQCP in one dimension but also shed light on exploring the DQCP in higher dimensions.
基金the Natural Science Foundation of Anhui Province,China(Grant No.2208085MA11)the National Natural Science Foundation of China(Grants Nos.11974356,12274414,and U1832209)。
文摘One could tune a topological double-Weyl semimetal or a topological triple-Weyl semimetal to become a topologically trivial insulator by opening a band gap.This kind of quantum phase transition is characterized by the change of certain topological invariant.A new gapless semimetallic state emerges at each topological quantum critical point.Here we perform a renormalization group analysis to investigate the stability of such critical points against perturbations induced by random scalar potential and random vector potential.We find that the quantum critical point between double-Weyl semimetal and band insulator is unstable and can be easily turned into a compressible diffusive metal by any type of weak disorder.The quantum critical point between triple-Weyl semimetal and band insulator flows to a stable strong-coupling fixed point if the system contains a random vector potential merely along the z-axis,but becomes a compressible diffusive metal when other types of disorders exist.
基金supported by the National Natural Science Foundation of China(Grant No.12005065)the Guangdong Basic and Applied Basic Research Fund(Grant No.2021A1515010317)。
文摘The quantum critical regime marks a zone in the phase diagram where quantum fluctuation around the critical point plays a significant role at finite temperatures.While it is of great physical interest,simulation of the quantum critical regime can be difficult on a classical computer due to its intrinsic complexity.Herein,we propose a variational approach,which minimizes the variational free energy,to simulate and locate the quantum critical regime on a quantum computer.The variational quantum algorithm adopts an ansatz by performing an unitary operator on a product of a single-qubit mixed state,in which the entropy can be analytically obtained from the initial state,and thus the free energy can be accessed conveniently.With numeral simulation,using the one-dimensional Kitaev model as a demonstration we show that the quantum critical regime can be identified by accurately evaluating the temperature crossover line.Moreover,the dependencies of both the correlation length and the phase coherence time with temperature are evaluated for the thermal states.Our work suggests a practical way as well as a first step for investigating quantum critical systems at finite temperatures on quantum devices with few qubits.
基金supported by the National Basic Research Program of China(Grant Nos.2016FYA0300402,2015CB921004,and 2012CB821404)the National Natural Science Foundation of China(Grant Nos.11374261 and 11204059)
文摘The measurements on temperature dependences of magnetic susceptibility χ(T), specific heat C(T), and electrical resistivity ρ(T) were carried out for the antiferromagnetic(AFM)(Ce(1-x)Lax)2Ir3Ge5(0 ≤ x ≤ 0.66) system. It was found that the Neel temperature TNdecreases with increasing La content x, and reaches 0 K near a critical content xcr =0.6. A new phase diagram was constructed based on these measurements. A non-Fermi liquid behavior in ρ(T) and a log T relationship in C(T) were found in the samples near xcr, indicating them to be near an AFM quantum critical point(QCP) with strong spin fluctuation. Our finding indicates that(Ce(1-x)Lax)2Ir3Ge5 may be a new platform to search for unconventional superconductivity.
基金The work at SUSTech was supported by the National Natural Science Foundation of China(Grant No.11974157)Part of this work was also supported by the National Natural Science Foundation of China(Grant No.11875265)+1 种基金the Scientific Instrument Developing Project of the Chinese Academy of Sciences(3He-based neutron polarization devices)the Institute of High Energy Physics,the Chinese Academy of Sciences.Kan X C and Tian M L were supported by the National Natural Science Foundation of China(Grant No.51802002).
文摘The magnetic phase diagram of rare-earth perovskite compound,GdScO3,has been investigated by magnetization and heat capacity.The system undergoes an antiferromagnetic phase transition at TN=2.6 K,with an easy axis of magnetization along the a axis.The magnetization measurements show that it exists a spin-flop transition around 0.3 T for the applied field along the a axis.The critical magnetic field for the antiferromagnetic-to-paramagnetic transition is near 3.2 T when temperature approaches zero.By scaling susceptibilities,we presume this point(B=3.2 T,T=0 K)might be a fieldinduced quantum critical point and the magnetic critical fluctuations can even be felt above TN.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00103 and 2010CB923003)the National Natural Science Foundation of China
文摘The recent discovery of high-temperature superconductivity in iron-based pnictides (chalcogenides) not only trig- gers tremendous enthusiasm in searching for new superconducting materials, but also opens a new avenue to the study of the Kondo physics. CeFeAsO is a parent compound of the 1111-type iron-based superconductors. It shows 3d- antiferromagnetic (AFM) ordering below 139 K and 4f-AFM ordering below 4 K. On the other hand, the phosphide CeFePO is a ferromagnetically corelated heavy-fermion (HF) metal with Kondo scale TK 10 K. These properties set up a new platform for research of the interplay among magnetism, Kondo effect, and superconductivity (SC). In this review, we present the recent progress in the study of chemical pressure effect in CeFeAsOl_yFy (y = 0 and 0.05). This P/As-doping in CeFeAsO serves as an effective controlling parameter which leads to two magnetic critical points, Xcl -- 0.4 and Xc2 - 0.92, associated with suppression of 3d and 4f magnetism, respectively. We also observe a turning point of AFM-FM ordering of Ce3+ moment at Xc3 - 0.37. The SC is absent in the phase diagram, which is attributed to the destruction to Cooper pair by Ce-FM fluctuations in the vicinity of Xcl. We continue to investigate CeFeAsl-xPxO0.95Fo.os. With the separation of xcl and xc3, this chemical pressure results in a broad SC region 0〈 x 〈 0.53, while the original HF behavior is driven away by 5% F- doping. Different roles of P and F dopings are addressed, and the interplay between SC and Ce-4f magnetism is also discussed.
文摘Quantum critical phenomena in the quasi-one-dimensional limit remain an open issue.We report the uniaxial stress effect on the quasi-one-dimensional Kondo lattice CeCo_(2)Ga_(8) by electric transport and AC heat capacity measurements.CeCo_(2)Ga_(8) is speculated to sit in close vicinity but on the quantum-disordered side of a quantum critical point.Upon compressing the c axis,parallel to the Ce-Ce chain,the onset of coherent Kondo effect is enhanced.In contrast,the electronic specific heat diverges more rapidly at low temperature when the intra-chain distance is elongated by compressions along a or b axis.These results suggest that a tensile intra-chain strain(ε_(c)>0)pushes CeCo_(2)Ga_(8) closer to the quantum critical point,while a compressive intra-chain strain(ε_(c)<0)likely causes departure.Our work provides a rare paradigm of manipulation near a quantum critical point in a quasi-1D Kondo lattice by uniaxial stress,and paves the way for further investigations on the unique feature of quantum criticality in the quasi-1D limit.
基金Project supported by the National Natural Science Foundation of China(Grant No.11504102)the Scientific Research Items Foundation of Hubei Educational Committee,China(Grant Nos.Q20161803 and B2016091)+1 种基金the Doctoral Scientific Research Foundation(Grant No.BK201407)the Major Scientific Research Project Pre-funds of Hubei University of Automotive Technology,China(Grant No.2014XY06)
文摘The transport property and phase transition for a parallel triple dot device are studied by adopting Wilson's numerical renormalization group technique, focusing on the effects of level spacings between neighboring dot sites. By keeping dot 2at the half-filled level and tuning the level differences, it is demonstrated that the system transits from local spin quadruplet to triplet and doublet sequently, and three kinds of Kondo peaks at the Fermi surface could be found, which are separated by two Kosterlitz–Thouless type quantum phase transitions and correspond to spin-3/2, spin-1, and spin-1/2 Kondo effect,respectively. To obtain a detailed understanding of these problems, the charge occupation, the spin–spin correlation, the transmission coefficient, and the temperature-dependent magnetic moment are shown, and necessary physical arguments are given.