When alien DNA inserts into cotton genome in multi-copy manner,several QTL in cotton genome are disrupted,which are called dQTL in this study.Transgenic mutant line is near-isogenic to its recipient which is divergent...When alien DNA inserts into cotton genome in multi-copy manner,several QTL in cotton genome are disrupted,which are called dQTL in this study.Transgenic mutant line is near-isogenic to its recipient which is divergent for the dQTL from remaining QTL.So,a set of data from a展开更多
Cotton(Gossypium spp.) is the leading fiber crop,and an important source of the important edible oil and protein meals in the world.Complex genetics and strong environmental effects hinder
Background Cotton is an important cash crop in China and a key component of the global textile market.Verticil-lium wilt is a major factor affecting cotton yield.Single nucleotide polymorphism(SNP)markers and phenotyp...Background Cotton is an important cash crop in China and a key component of the global textile market.Verticil-lium wilt is a major factor affecting cotton yield.Single nucleotide polymorphism(SNP)markers and phenotypic data can be used to identify genetic markers and loci associated with cotton resistance to Verticillium wilt.We used eight upland cotton parent materials in this study to construct a multiparent advanced generation inter-cross(MAGIC)population comprising 320 lines.The Verticillium wilt resistance of the MAGIC population was identified in the green-house in 2019,and the average relative disease index(ARDI)was calculated.A genome-wide association study(GWAS)was performed to discover SNP markers/genes associated with Verticillium wilt resistance.Results ARDI of the MAGIC population showed wide variation,ranging from 16.7 to 79.4 across three replicates.This variation reflected a diverse range of resistance to Verticillium wilt within the population.Analysis of distribution pat-terns across the environments revealed consistent trends,with coefficients of variation between 12.25%and 21.96%.Families with higher ARDI values,indicating stronger resistance,were more common,likely due to genetic diver-sity and environmental factors.Population structure analysis divided the MAGIC population into three subgroups,with Group I showing higher genetic variation and Groups II and III displaying more uniform resistance performance.Principal component analysis(PCA)confirmed these divisions,highlighting the genetic diversity underlying Verticil-lium wilt resistance.Through GWAS,we identified 19 SNPs significantly associated with Verticillium wilt resistance,distributed across three chromosomes.The screening of candidate genes was performed on the transcriptome derived from resistant and susceptible cultivars,combined with gene annotation and tissue expression patterns,and two key candidate genes,Ghir_A01G006660 and Ghir_A02G008980,were found to be potentially associated with Verticillium wilt resistance.This suggests that these two candidate genes may play an important role in responding to Verticillium wilt.Conclusion This study aims to dissect the genetic basis of Verticillium wilt resistance in cotton by using a MAGIC population and GWAS.The study seeks to provide valuable genetic resources for marker-assisted breeding and enhance the understanding of resistance mechanisms to improve cotton resilience against Verticillium wilt.展开更多
Field trials with a set of 108 doubled haploid lines(DHs) derived from a cross between the Chinese winter wheat cvs.CA9613 and H1488 were run at Beijing(China).Phenotypic data were recorded for major agronomic yield t...Field trials with a set of 108 doubled haploid lines(DHs) derived from a cross between the Chinese winter wheat cvs.CA9613 and H1488 were run at Beijing(China).Phenotypic data were recorded for major agronomic yield traits,i.e.grain weight per ear,grain number per ear and thousand grain weight(Tgw) in two field trials at Beijing.Based on the phenotypic data and a genetic map comprising 168 SSR markers,an analysis of quantitative trait loci(QTL) was carried out for yield and yield parameters using the composite interval mapping(CIM) approach.A total of 14 QTL were detected for these traits across two environments.Four of these QTL located on chromosomes 1A and 2B,respectively,exhibited pleiotropic effects.Loci showing pleiotropic effects will be very useful for understanding the homeologous relationships of QTL and designing an appropriate marker-assisted selection programme by multi-trait selection in order to accumulate("pyramide") favorable alleles at different loci.展开更多
文摘When alien DNA inserts into cotton genome in multi-copy manner,several QTL in cotton genome are disrupted,which are called dQTL in this study.Transgenic mutant line is near-isogenic to its recipient which is divergent for the dQTL from remaining QTL.So,a set of data from a
文摘Cotton(Gossypium spp.) is the leading fiber crop,and an important source of the important edible oil and protein meals in the world.Complex genetics and strong environmental effects hinder
基金supported by funding from the fund for National Key Research and Development Program of China(2023YFD2301203-05)National Natural Science Foundation of China(32260510)+3 种基金Special Financial Project for Seed Industry Development in the Autonomous Region(BNZJ2024-10,BNZJ2024-30)Key Project for Science and Technology Development of Shihezi city,Xinjiang Production and Construction Crops(2022NY01)Shihezi University high-level talent research project(RCZK202337)Science and Technol-ogy Planning of Shuanghe city,Xinjiang Production and Construction Crops(2021NY02).
文摘Background Cotton is an important cash crop in China and a key component of the global textile market.Verticil-lium wilt is a major factor affecting cotton yield.Single nucleotide polymorphism(SNP)markers and phenotypic data can be used to identify genetic markers and loci associated with cotton resistance to Verticillium wilt.We used eight upland cotton parent materials in this study to construct a multiparent advanced generation inter-cross(MAGIC)population comprising 320 lines.The Verticillium wilt resistance of the MAGIC population was identified in the green-house in 2019,and the average relative disease index(ARDI)was calculated.A genome-wide association study(GWAS)was performed to discover SNP markers/genes associated with Verticillium wilt resistance.Results ARDI of the MAGIC population showed wide variation,ranging from 16.7 to 79.4 across three replicates.This variation reflected a diverse range of resistance to Verticillium wilt within the population.Analysis of distribution pat-terns across the environments revealed consistent trends,with coefficients of variation between 12.25%and 21.96%.Families with higher ARDI values,indicating stronger resistance,were more common,likely due to genetic diver-sity and environmental factors.Population structure analysis divided the MAGIC population into three subgroups,with Group I showing higher genetic variation and Groups II and III displaying more uniform resistance performance.Principal component analysis(PCA)confirmed these divisions,highlighting the genetic diversity underlying Verticil-lium wilt resistance.Through GWAS,we identified 19 SNPs significantly associated with Verticillium wilt resistance,distributed across three chromosomes.The screening of candidate genes was performed on the transcriptome derived from resistant and susceptible cultivars,combined with gene annotation and tissue expression patterns,and two key candidate genes,Ghir_A01G006660 and Ghir_A02G008980,were found to be potentially associated with Verticillium wilt resistance.This suggests that these two candidate genes may play an important role in responding to Verticillium wilt.Conclusion This study aims to dissect the genetic basis of Verticillium wilt resistance in cotton by using a MAGIC population and GWAS.The study seeks to provide valuable genetic resources for marker-assisted breeding and enhance the understanding of resistance mechanisms to improve cotton resilience against Verticillium wilt.
文摘Field trials with a set of 108 doubled haploid lines(DHs) derived from a cross between the Chinese winter wheat cvs.CA9613 and H1488 were run at Beijing(China).Phenotypic data were recorded for major agronomic yield traits,i.e.grain weight per ear,grain number per ear and thousand grain weight(Tgw) in two field trials at Beijing.Based on the phenotypic data and a genetic map comprising 168 SSR markers,an analysis of quantitative trait loci(QTL) was carried out for yield and yield parameters using the composite interval mapping(CIM) approach.A total of 14 QTL were detected for these traits across two environments.Four of these QTL located on chromosomes 1A and 2B,respectively,exhibited pleiotropic effects.Loci showing pleiotropic effects will be very useful for understanding the homeologous relationships of QTL and designing an appropriate marker-assisted selection programme by multi-trait selection in order to accumulate("pyramide") favorable alleles at different loci.