A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20℃ was developed based on newly introduced atom-type topological indices. Th...A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20℃ was developed based on newly introduced atom-type topological indices. The data set contained non-polar and polar liquids, and saturated and unsaturated compounds. The regression analysis shows that excellent result is obtained with multiple linear regression. The predictive power of the proposed model was discussed using the leave-one-out (LOO) cross-validated (CV) method. The correlation coefficient (R) and the leave-one-out cross-validation correlation coefficient (Rcv) of multiple linear regression model are 0.991 4 and 0.991 3, respectively. The new model gives the average absolute relative deviation of 1.81% for 92 substances. The result demonstrates that novel topological indices based on the equilibrium electro-negativity of atom and the relative bond length are useful model parameters for QSPR analysis of compounds.展开更多
A quantitative structure–activity relationship(QSAR) was performed to analyze antimalarial activities against the D10 strains of Plasmodium falciparum of triazole-linked chalcone and dienone hybrid derivatives using ...A quantitative structure–activity relationship(QSAR) was performed to analyze antimalarial activities against the D10 strains of Plasmodium falciparum of triazole-linked chalcone and dienone hybrid derivatives using partial least squares regression coupled with stepwise forward–backward variable selection method. QSAR analyses were performed on the available IC50 D10 strains of Plasmodium falciparum data based on theoretical molecular descriptors. The QSAR model developed gave good predictive correlation coefficient(r2) of 0.8994, significant cross validated correlation coefficient(q2) of 0.7689, r2 for external test set)(2predr of 0.8256, coefficient of correlation of predicted data set)(2sepred,r of 0.3276. The model shows that antimalarial activity is greatly affected by donor and electron-withdrawing substituents. The study implicates that chalcone and dienone rings should have strong donor and electron-withdrawing substituents as they increase the activity of chalcone. Results show that the predictive ability of the model is satisfactory, and it can be used for designing similar group of antimalarial compounds. The findings derived from this analysis along with other molecular modeling studies will be helpful in designing of the new potent antimalarial activity of clinical utility.展开更多
为验证萜类驱避化合物与嗅觉引诱物二氧化碳存在缔合作用,并研究缔合作用对蚊虫驱避活性的影响。本研究借助计算化学的方法获得缔合体和缔合能量,利用Gaussian View和Gaussian03W软件分别构建和优化二氧化碳、22个萜类蚊虫驱避化合物以...为验证萜类驱避化合物与嗅觉引诱物二氧化碳存在缔合作用,并研究缔合作用对蚊虫驱避活性的影响。本研究借助计算化学的方法获得缔合体和缔合能量,利用Gaussian View和Gaussian03W软件分别构建和优化二氧化碳、22个萜类蚊虫驱避化合物以及它们与二氧化碳缔合后的三维分子结构,经Ampac8.16转化后,获得它们的缔合能量。借助定量构效关系计算方法研究缔合作用对驱避活性的影响,利用Codessa2.7.10计算获得驱避剂和缔合体的各类结构描述符,从包括缔合体结构描述符及特征描述符在内的各类结构参数中筛选显著性参数,以萜类驱避化合物对白纹伊蚊Aedes albopictus的校正驱避率的对数值为活性数据,建立结构描述符与驱避活性的定量构效关系(quantitative structure-activity relationship,QSAR)模型。结果获得了22个萜类驱避化合物与二氧化碳缔合的缔合能量,计算显示它们之间存在缔合作用并且可以形成缔合体;获得1个R2为0.9643的4参数QSAR模型,这4个参数所对应的结构描述符分别是COM-WNSA-3 Weighted PNSA(PNSA3*TMSA/1000)[Zefirov’s PC],f-TerCO2-Min e-n attraction for a C-O bond,M-Max 1-electron reaction index for an Oatom,M-Min(>0.1)bond order of an H atom,前2个参数分别为缔合体的整体结构描述符和碎片特征描述符。计算化学结果表明,萜类驱避化合物与二氧化碳存在缔合作用,该缔合作用对驱避活性的影响显著。展开更多
基金Projects(20775010,21075011) supported by the National Natural Science Foundation of ChinaProject(2008AA05Z405) supported by the National High Technology Research and Development Program of China+2 种基金Project(09JJ3016) supported by Hunan Provincial Natural Science Foundation,ChinaProject(09C066) supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(2010CL01) supported by the Foundation of Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,China
文摘A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20℃ was developed based on newly introduced atom-type topological indices. The data set contained non-polar and polar liquids, and saturated and unsaturated compounds. The regression analysis shows that excellent result is obtained with multiple linear regression. The predictive power of the proposed model was discussed using the leave-one-out (LOO) cross-validated (CV) method. The correlation coefficient (R) and the leave-one-out cross-validation correlation coefficient (Rcv) of multiple linear regression model are 0.991 4 and 0.991 3, respectively. The new model gives the average absolute relative deviation of 1.81% for 92 substances. The result demonstrates that novel topological indices based on the equilibrium electro-negativity of atom and the relative bond length are useful model parameters for QSPR analysis of compounds.
文摘A quantitative structure–activity relationship(QSAR) was performed to analyze antimalarial activities against the D10 strains of Plasmodium falciparum of triazole-linked chalcone and dienone hybrid derivatives using partial least squares regression coupled with stepwise forward–backward variable selection method. QSAR analyses were performed on the available IC50 D10 strains of Plasmodium falciparum data based on theoretical molecular descriptors. The QSAR model developed gave good predictive correlation coefficient(r2) of 0.8994, significant cross validated correlation coefficient(q2) of 0.7689, r2 for external test set)(2predr of 0.8256, coefficient of correlation of predicted data set)(2sepred,r of 0.3276. The model shows that antimalarial activity is greatly affected by donor and electron-withdrawing substituents. The study implicates that chalcone and dienone rings should have strong donor and electron-withdrawing substituents as they increase the activity of chalcone. Results show that the predictive ability of the model is satisfactory, and it can be used for designing similar group of antimalarial compounds. The findings derived from this analysis along with other molecular modeling studies will be helpful in designing of the new potent antimalarial activity of clinical utility.
文摘为验证萜类驱避化合物与嗅觉引诱物二氧化碳存在缔合作用,并研究缔合作用对蚊虫驱避活性的影响。本研究借助计算化学的方法获得缔合体和缔合能量,利用Gaussian View和Gaussian03W软件分别构建和优化二氧化碳、22个萜类蚊虫驱避化合物以及它们与二氧化碳缔合后的三维分子结构,经Ampac8.16转化后,获得它们的缔合能量。借助定量构效关系计算方法研究缔合作用对驱避活性的影响,利用Codessa2.7.10计算获得驱避剂和缔合体的各类结构描述符,从包括缔合体结构描述符及特征描述符在内的各类结构参数中筛选显著性参数,以萜类驱避化合物对白纹伊蚊Aedes albopictus的校正驱避率的对数值为活性数据,建立结构描述符与驱避活性的定量构效关系(quantitative structure-activity relationship,QSAR)模型。结果获得了22个萜类驱避化合物与二氧化碳缔合的缔合能量,计算显示它们之间存在缔合作用并且可以形成缔合体;获得1个R2为0.9643的4参数QSAR模型,这4个参数所对应的结构描述符分别是COM-WNSA-3 Weighted PNSA(PNSA3*TMSA/1000)[Zefirov’s PC],f-TerCO2-Min e-n attraction for a C-O bond,M-Max 1-electron reaction index for an Oatom,M-Min(>0.1)bond order of an H atom,前2个参数分别为缔合体的整体结构描述符和碎片特征描述符。计算化学结果表明,萜类驱避化合物与二氧化碳存在缔合作用,该缔合作用对驱避活性的影响显著。