The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy beco...The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy becomes defect dipole,which prevents the domain rotation.In this field,a serious problem is that generally,Qm decreases as the temperature(T)increases,since the oxygen vacancies are decoupled from the defect dipoles.In this work,Q_(m) of Pb_(0.95)Sr_(0.05)(Zr_(0.53)Ti_(0.47))O_(3)(PSZT)ceramics doped by 0.40%Fe_(2)O_(3)(in mole)abnormally increases as T increases,of which the Qm and piezoelectric coefficient(d_(33))at room temperature and Curie temperature(TC)are 507,292 pC/N,and 345℃,respectively.The maximum Qm of 824 was achieved in the range of 120–160℃,which is 62.52%higher than that at room temperature,while the dynamic piezoelectric constant(d_(31))was just slightly decreased by 3.85%.X-ray diffraction(XRD)and piezoresponse force microscopy results show that the interplanar spacing and the fine domains form as temperature increases,and the thermally stimulated depolarization current shows that the defect dipoles are stable even the temperature up to 240℃.It can be deduced that the aggregation of oxygen vacancies near the fine domains and defect dipole can be stable up to 240℃,which pins domain rotation,resulting in the enhanced Q_(m) with the increasing temperature.These results give a potential path to design high Q_(m) at high temperature.展开更多
Passive house has been constructed in China on a large-scale over the past couple years for its great energy saving potential.However,research indicates that there is a significant discrepancy in energy performance fo...Passive house has been constructed in China on a large-scale over the past couple years for its great energy saving potential.However,research indicates that there is a significant discrepancy in energy performance for heating and cooling between passive houses in different climate zones.Therefore,this research develops a comparative analysis on the energy saving potential of passive houses with the conventional around China.A sensitivity analysis of thermal characteristics of building envelope(insulation of exterior walls and windows,and airtightness)on energy consumption is further carried out to improve the climate adaptability of passive house.Moreover,the variation of energy consumption under different heat gain intensity is also compared,to evaluate the effects of envelope thermal characteristics comprehensively.Results suggest that the decrease of exterior wall insulation leads to the greatest increase in energy consumption,especially in severe cold zone in China.However,the optimal insulation may change with the internal heat gain intensity,for instance,the decrease of insulation(from 0.4 to 1.0 W/(m^(2)·K))could reduce the energy consumption by 4.65 kW·h/(m^(2)·a)when the heat gain increases to 20 W/m^(2)for buildings in Hot Summer and Cold Winter zone in China.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the fi eld of animal-origin foods,involving food mate...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the fi eld of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the fi eld of animal-origin foods,involving food mat...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the fi eld of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product fl avor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the field of animal-origin foods,involving food mate...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the fi eld of animal-origin foods,involving food mat...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the fi eld of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product fl avor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.展开更多
Arugula(Eruca sativa Mill.),as an edible medicinal vegetable of peculiar flavor,is served as uncooked dish.The influence of variable lighting intensity(LI)on the growth characteristics and nutritional quality of hydro...Arugula(Eruca sativa Mill.),as an edible medicinal vegetable of peculiar flavor,is served as uncooked dish.The influence of variable lighting intensity(LI)on the growth characteristics and nutritional quality of hydroponically grown arugula was investigated by using light-emitting diodes(LEDs)to light the hydroponically grown arugula for a reference for industrialized arugula production.The dynamic demands of arugula for LI in the seedling stage,initial growth stage and vigorous growth stage were tested under two light quality conditions including a red/blue light ratio of 7:1 and a light/dark photoperiod of 12 h/12 h.Then,the curves of variable LI-induced changes in the growth indices of arugula in different development periods were drawn.Next,the influence of variable LI on the growth characteristics and nutritional quality of arugula was investigated by measuring the dry/fresh weight ratio,chlorophyll content,vitamin C content and soluble protein content.Variable LI significantly increased the height,stem diameter,leaf width,dry/fresh weight ratio,chlorophyll content and soluble protein content of arugula plant.Plant height,stem diameter,dry/fresh weight ratio,chlorophyll content and soluble protein content were the highest in the group exposed to LI of 200,300 and 300μmol•m^(-2)•s^(-1)during the seedling stage,initial growth stage and vigorous growth stage,respectively.The greatest leaf width was achieved at LI of 100,250 and 350μmol•m^(-2)•s^(-1),respectively.High intensity LI markedly repressed the synthesis of vitamin C.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identification;cell-cultured meat,regulations and standards.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identification;cell-cultured meat,regulations and standards.展开更多
In the implementation of quality function deployment (QFD), the determination of the target values of engineering characteristics is a complex decision process with multiple variables and multiple objectives that sh...In the implementation of quality function deployment (QFD), the determination of the target values of engineering characteristics is a complex decision process with multiple variables and multiple objectives that should trade off, and optimize all kinds of conflicts and constraints. A fuzzy linear programming model (FLP) is proposed. On the basis of the inherent fuzziness of QFD system, triangular fuzzy numbers are used to represent all the relationships and correlations, and then, the functional relationships between the customer needs and engineering characteristics and the functional correlations among the engineering characteristics are determined with the information in the house of quality (HoQ) fully used. The fuzzy linear programming (FLP) model aims to find the optimal target values of the engineering characteristics to maximize the customer satisfaction. Finally, the proposed method is illustrated by a numerical example.展开更多
基金National Natural Science Foundation of China(U2241242)National Key R&D Program of China(2023YFB3812000,2021YFA0716502)。
文摘The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy becomes defect dipole,which prevents the domain rotation.In this field,a serious problem is that generally,Qm decreases as the temperature(T)increases,since the oxygen vacancies are decoupled from the defect dipoles.In this work,Q_(m) of Pb_(0.95)Sr_(0.05)(Zr_(0.53)Ti_(0.47))O_(3)(PSZT)ceramics doped by 0.40%Fe_(2)O_(3)(in mole)abnormally increases as T increases,of which the Qm and piezoelectric coefficient(d_(33))at room temperature and Curie temperature(TC)are 507,292 pC/N,and 345℃,respectively.The maximum Qm of 824 was achieved in the range of 120–160℃,which is 62.52%higher than that at room temperature,while the dynamic piezoelectric constant(d_(31))was just slightly decreased by 3.85%.X-ray diffraction(XRD)and piezoresponse force microscopy results show that the interplanar spacing and the fine domains form as temperature increases,and the thermally stimulated depolarization current shows that the defect dipoles are stable even the temperature up to 240℃.It can be deduced that the aggregation of oxygen vacancies near the fine domains and defect dipole can be stable up to 240℃,which pins domain rotation,resulting in the enhanced Q_(m) with the increasing temperature.These results give a potential path to design high Q_(m) at high temperature.
基金Project(51825802)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProject(2018YFE0106100)supported by the National Key R&D Program of China。
文摘Passive house has been constructed in China on a large-scale over the past couple years for its great energy saving potential.However,research indicates that there is a significant discrepancy in energy performance for heating and cooling between passive houses in different climate zones.Therefore,this research develops a comparative analysis on the energy saving potential of passive houses with the conventional around China.A sensitivity analysis of thermal characteristics of building envelope(insulation of exterior walls and windows,and airtightness)on energy consumption is further carried out to improve the climate adaptability of passive house.Moreover,the variation of energy consumption under different heat gain intensity is also compared,to evaluate the effects of envelope thermal characteristics comprehensively.Results suggest that the decrease of exterior wall insulation leads to the greatest increase in energy consumption,especially in severe cold zone in China.However,the optimal insulation may change with the internal heat gain intensity,for instance,the decrease of insulation(from 0.4 to 1.0 W/(m^(2)·K))could reduce the energy consumption by 4.65 kW·h/(m^(2)·a)when the heat gain increases to 20 W/m^(2)for buildings in Hot Summer and Cold Winter zone in China.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the fi eld of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the fi eld of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product fl avor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the fi eld of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product fl avor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.
基金Supported by the National"the 13th Five-Year"Key R&D Program(2016YFD0701905)。
文摘Arugula(Eruca sativa Mill.),as an edible medicinal vegetable of peculiar flavor,is served as uncooked dish.The influence of variable lighting intensity(LI)on the growth characteristics and nutritional quality of hydroponically grown arugula was investigated by using light-emitting diodes(LEDs)to light the hydroponically grown arugula for a reference for industrialized arugula production.The dynamic demands of arugula for LI in the seedling stage,initial growth stage and vigorous growth stage were tested under two light quality conditions including a red/blue light ratio of 7:1 and a light/dark photoperiod of 12 h/12 h.Then,the curves of variable LI-induced changes in the growth indices of arugula in different development periods were drawn.Next,the influence of variable LI on the growth characteristics and nutritional quality of arugula was investigated by measuring the dry/fresh weight ratio,chlorophyll content,vitamin C content and soluble protein content.Variable LI significantly increased the height,stem diameter,leaf width,dry/fresh weight ratio,chlorophyll content and soluble protein content of arugula plant.Plant height,stem diameter,dry/fresh weight ratio,chlorophyll content and soluble protein content were the highest in the group exposed to LI of 200,300 and 300μmol•m^(-2)•s^(-1)during the seedling stage,initial growth stage and vigorous growth stage,respectively.The greatest leaf width was achieved at LI of 100,250 and 350μmol•m^(-2)•s^(-1),respectively.High intensity LI markedly repressed the synthesis of vitamin C.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identification;cell-cultured meat,regulations and standards.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identification;cell-cultured meat,regulations and standards.
基金supported by the National Natural Science Foundation of China (70571041).
文摘In the implementation of quality function deployment (QFD), the determination of the target values of engineering characteristics is a complex decision process with multiple variables and multiple objectives that should trade off, and optimize all kinds of conflicts and constraints. A fuzzy linear programming model (FLP) is proposed. On the basis of the inherent fuzziness of QFD system, triangular fuzzy numbers are used to represent all the relationships and correlations, and then, the functional relationships between the customer needs and engineering characteristics and the functional correlations among the engineering characteristics are determined with the information in the house of quality (HoQ) fully used. The fuzzy linear programming (FLP) model aims to find the optimal target values of the engineering characteristics to maximize the customer satisfaction. Finally, the proposed method is illustrated by a numerical example.