We present a theoretical investigation of high-order harmonic generation in a chirped two-color laser field, which is synthesized by a 10-fs/800-nm fundamental chirped pulse and a 10-fs/1760-nm subharmonic pulse. It i...We present a theoretical investigation of high-order harmonic generation in a chirped two-color laser field, which is synthesized by a 10-fs/800-nm fundamental chirped pulse and a 10-fs/1760-nm subharmonic pulse. It is shown that a supercontinuum can be produced using the multicycle two-color chirped field. However, the supercontinuum reveals a strong modulation structure, which is not good for the generation of an isolated attosecond pulse. By adding a static electric field to the multicycle two-color chirped field, not only the harmonic cutoff is extended remarkably, but also the quantum paths of the high-order harmonic generation (HHG) are modified significantly. As a result, both the extension of the supercontinuum and the selection of a single quantum path are achieved, producing an isolated 23-as pulse with a bandwidth of about 170.6 eV. Furthermore, the influences of the laser intensities on the supercontinuum and isolated attosecond pulse generation are investigated.展开更多
Most of the schemes for generating isolated attosecond pulses(IAP) are sensitive to the carrier-envelope phase(CEP)of the driving lasers. We propose a scheme for generating IAP using two-color counter-rotating cir...Most of the schemes for generating isolated attosecond pulses(IAP) are sensitive to the carrier-envelope phase(CEP)of the driving lasers. We propose a scheme for generating IAP using two-color counter-rotating circularly polarized(TCCRCP) laser pulses. The results demonstrate that the dependence of the IAP generation on CEP stability is largely reduced in this scheme. IAP can be generated at most of CEPs. Therefore, the experiment requirements become lower.展开更多
We demonstrate a self-starting erbium fiber oscillator-amplifier system based on the nonlinear polarization rota- tion mode-locked mechanism. The direct output pulse from the amplifier is 47fs with an average power of...We demonstrate a self-starting erbium fiber oscillator-amplifier system based on the nonlinear polarization rota- tion mode-locked mechanism. The direct output pulse from the amplifier is 47fs with an average power of 1.22 W and a repetition rate of 50 MHz, corresponding to a pulse energy of 24 nJ. The full width at half-maximum of the spectrum of the output pulses is approximately 93nm at a central wavelength of 1572nm so that the transform- limited pulse duration is as short as 39 fs. Due to the imperfect dispersion compensation, we compress the pulses to 47fs in this experiment.展开更多
A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the re...A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the repetition rate of 113 MHz. To the best of our knowledge, this is the shortest pulse duration ever produced from the Yb-doped orthosilicates lasers family.展开更多
We theoretically investigate the characteristics of terahertz(THz) radiation from monolayer graphene exposed to normal incident few-cycle laser pulses, by numerically solving the extended semiconductor Bloch equations...We theoretically investigate the characteristics of terahertz(THz) radiation from monolayer graphene exposed to normal incident few-cycle laser pulses, by numerically solving the extended semiconductor Bloch equations. Our simulations show that the THz spectra in low frequency regions are highly dependent on the carrier envelope phase(CEP) of driving laser pulses. Using an optimal CEP of few-cycle laser pulses, we can obtain broadband strong THz waves, due to the symmetry breaking of the laser-graphene system. Our results also show that the strength of the THz spectra depend on both the intensity and central wavelength of the laser pulses. The intensity dependence of the THz wave can be described by the excitation rate of graphene, while wavelength dependence can be traced back to the band velocity and the population of graphene. We find that a near single-cycle THz pulse can be obtained from graphene driven by a mid-infrared laser pulse.展开更多
We propose an efficient method for the generation of an isolated attosecond pulse from the asymmetric molecular ions HeH^2+ by adding a half-cycle-like field (HCLF) to the fundamental driving laser field. The high-...We propose an efficient method for the generation of an isolated attosecond pulse from the asymmetric molecular ions HeH^2+ by adding a half-cycle-like field (HCLF) to the fundamental driving laser field. The high-order harmonic generation (HHG) is investigated by numerically sowing the time-dependent Schrodinger equation. By performing the time-frequency distributions and the electronic wave packet probability densities, we find that the optimizing combined field is not only useful for extending the HHG cutoff, but also for simplifying the recombination channels through controlling the electron localization. In addition, by adjusting the intensity of the HCLF, a dominant short quantum path is selected to contribute the HHG spectrum. As a result, a 75-as isolated attosecond pulse is obtained by superposing a proper range of the harmonics.展开更多
The two-color circularly polarized pulses scheme was proposed to generate isolated attosecond pulses in our previous work [Phys. Rev. A 87 (2013) 043406], while the polarization of the attosecond pulse was not inves...The two-color circularly polarized pulses scheme was proposed to generate isolated attosecond pulses in our previous work [Phys. Rev. A 87 (2013) 043406], while the polarization of the attosecond pulse was not investigated. We show a supplementary explanation of this scheme and present another scheme to generate linear isolated attosecond pulses by combining a circularly polarized pulse with an elliptically polarized pulse. High-order harmonic generation and quantum path control are investigated to compare these two schemes. Both schemes can obtain supercontinuum spectra plateau from about 200eV to 550eV, which belong to the water window region. It is found that the latter scheme can clearly eliminate the short quantum path and extend the harmonic plateau. A linear isolated attosecond pulse with a duration of sub-6Oas can be generated by superposing a bandwidth of 70eV.展开更多
We study the energy scaling of terahertz (THz) emission through difference frequency generation of near-infrared pulses, and demonstrate that Gigawatt few-cycle THz transients at the central frequency of 30 THz are pr...We study the energy scaling of terahertz (THz) emission through difference frequency generation of near-infrared pulses, and demonstrate that Gigawatt few-cycle THz transients at the central frequency of 30 THz are produced from GaSe crystal pumped by two pulses at 1.65 and 1.95 micrometers, with the high quantum yield of 28%. Our analysis indicates that the high yield of DFG originates from the largely reduced group velocity mismatch as the long-wavelength pumping pulses are employed.展开更多
Chirped wideband pump and seed pulses are usually considered for backward Raman amplification(BRA) in plasmas to achieve an extremely high-power laser pulse. However, current theoretical models only contain either a...Chirped wideband pump and seed pulses are usually considered for backward Raman amplification(BRA) in plasmas to achieve an extremely high-power laser pulse. However, current theoretical models only contain either a chirped pump or a chirped seed. In this paper, modified three-wave coupling equations are proposed for the BRA in the plasmas with both chirped wideband pump and seed. The simulation results can more precisely describe the experiments, such as the Princeton University experiment. The optimized chirp and bandwidth are determined based on the simulation to enhance the output intensity and efficiency.展开更多
We theoretically present a method for generating an ultrabroad extreme ultraviolet (XUV) supercontinuum by using the combination of a multicycle chirped laser and a static electric field. At a low laser intensity, t...We theoretically present a method for generating an ultrabroad extreme ultraviolet (XUV) supercontinuum by using the combination of a multicycle chirped laser and a static electric field. At a low laser intensity, the spectral cutoff is extended to the 495th order harmonic, and the bandwidth of the supercontinuum spectrum is broadened to 535 eV. At a high laser intensity, the harmonic cutoff is enlarged to the 667th order, and a supercontinuum covering a bandwidth of 1035 eV is generated. In these two cases, the long quantum path is removed, and the short quantum path is selected. Especially for the relatively high laser intensity, an isolated 23-attosecond pulse with a bandwidth of about 170.6 eV is directly obtained. Finally, we also analyze the influences of the chirp parameter and the duration of the chirped pulse as well as the static field strength on the supereontinuum.展开更多
The generation of high-order harmonic and the attosecond pulse of the N2 molecule with an orthogonally polarized two-color laser field are investigated by the strong-field Lewenstein model.We show that the control of ...The generation of high-order harmonic and the attosecond pulse of the N2 molecule with an orthogonally polarized two-color laser field are investigated by the strong-field Lewenstein model.We show that the control of contributions to high-order harmonic generation(HHG) from different nuclei is realized by properly selecting the relative phase.When the relative phase is chosen to be φ= 0.4π,the contribution to HHG from one nucleus is much more than that from another.Interference between two nuclei can be suppressed greatly; a supercontinuum spectrum of HHG appears from 40 e V to125 e V.The underlying physical mechanism is well explained by the time–frequency analysis and the semi-classical threestep model with a finite initial transverse velocity.By superposing several orders of harmonics,an isolated attosecond pulse with a duration of 80 as can be generated.展开更多
We investigate the spectral redshift of high-order harmonics of the H_2~+(D_2~+) molecule by numerically solving the non-Born–Oppenheimer time-dependent Schr ¨odinger equation(TDSE). The results show that ...We investigate the spectral redshift of high-order harmonics of the H_2~+(D_2~+) molecule by numerically solving the non-Born–Oppenheimer time-dependent Schr ¨odinger equation(TDSE). The results show that the spectral redshift of highorder harmonics can be observed by adding a weak pulse in the falling part of the trapezoidal laser pulses. Comparing with the H_2~+ molecule, the shift of high-order harmonic generation(HHG) spectrum for the D_2~+ molecule is more obvious.We employ the spatial distribution in HHG and time-frequency analysis to illustrate the physical mechanism of the spectral redshift of high-order harmonics.展开更多
With the development of laser technologies,multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms.A practical optimization algorithm ...With the development of laser technologies,multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms.A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes.We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm.By choosing different fitness criteria,we demonstrate that:(i) harmonic yields can be enhanced by 10 to 100 times,(ii) harmonic cutoff energy can be substantially extended,(iii) specific harmonic orders can be selectively enhanced,and(iv) single attosecond pulses can be efficiently generated.The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed.The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years.展开更多
The wavelength-tunable rectangular mode-locking operation is demonstrated in an all-fiber laser based on semi- conductor saturable absorber mirror. As the dissipative soliton resonance signature, the pulse duration va...The wavelength-tunable rectangular mode-locking operation is demonstrated in an all-fiber laser based on semi- conductor saturable absorber mirror. As the dissipative soliton resonance signature, the pulse duration varies from 5SOps to 2.1 ns as a function o~ the increasing pump power. Correspondingly, the maximum pulse energy is 9.11 n3. Moreover, it is found that the wavelength tunable operation with a range of approximately 10 nm could be obtained by properly adjusting the polarization controllers. The characteristics of the rectangular pulses at different wavelengths are similar to each other. The demonstration of the wavelength tunable rectangular pulses would be beneficial to some applications for many fields such as spectroscopy and sensing research.展开更多
Using the reduced graphene oxide(rGO) as a saturable absorber(SA) in an Er-doped fiber(EDF) laser cavity,we obtain the Q-switching operation. The rGO SA is prepared by depositing the GO on fluorine mica(FM) us...Using the reduced graphene oxide(rGO) as a saturable absorber(SA) in an Er-doped fiber(EDF) laser cavity,we obtain the Q-switching operation. The rGO SA is prepared by depositing the GO on fluorine mica(FM) using the thermal reduction method. The modulation depth of rGO/FM is measured to be 3.2%. By incorporating the rGO/FM film into the EDF laser cavity, we obtain stable Q-switched pulses. The shortest pulse duration is3.53 μs, and the maximum single pulse energy is 48.19 nJ. The long-term stability of working is well exhibited.The experimental results show that the rGO possesses potential photonics applications.展开更多
We present the recent new developments of time-dependent Schrödinger equation and time-dependent density-functional theory for accurate and efficient treatment of the electronic structure and time-dependent quant...We present the recent new developments of time-dependent Schrödinger equation and time-dependent density-functional theory for accurate and efficient treatment of the electronic structure and time-dependent quantum dynamics of many-electron atomic and molecular systems in intense laser fields.We extend time-dependent generalized pseudospectral(TDGPS)numerical method developed for time-dependent wave equations in multielectron systems.The TDGPS method allows us to obtain highly accurate time-dependent wave functions with the use of only a modest number of spatial grid point for complex quantum dynamical calculations.The usefulness of these procedures is illustrated by a few case studies of atomic and molecular processes of current interests in intense laser fields,including multiphoton ionization,above-threshold ionization,high-order harmonic generation,attosecond pulse generation,and quantum dynamical processes related to multielectron effects.We conclude this paper with some open questions and perspectives of multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields.展开更多
基金Project supported by the Science Foundation of Baoji University of Arts and Sciences,China(Grant No.ZK11061)the Natural Science Foundation of Education Committee of Shaanxi Province,China(Grant No.2013JK0637)
文摘We present a theoretical investigation of high-order harmonic generation in a chirped two-color laser field, which is synthesized by a 10-fs/800-nm fundamental chirped pulse and a 10-fs/1760-nm subharmonic pulse. It is shown that a supercontinuum can be produced using the multicycle two-color chirped field. However, the supercontinuum reveals a strong modulation structure, which is not good for the generation of an isolated attosecond pulse. By adding a static electric field to the multicycle two-color chirped field, not only the harmonic cutoff is extended remarkably, but also the quantum paths of the high-order harmonic generation (HHG) are modified significantly. As a result, both the extension of the supercontinuum and the selection of a single quantum path are achieved, producing an isolated 23-as pulse with a bandwidth of about 170.6 eV. Furthermore, the influences of the laser intensities on the supercontinuum and isolated attosecond pulse generation are investigated.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.61690223,11561121002,61521093,11227902,11404356,and 11574332)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB16)
文摘Most of the schemes for generating isolated attosecond pulses(IAP) are sensitive to the carrier-envelope phase(CEP)of the driving lasers. We propose a scheme for generating IAP using two-color counter-rotating circularly polarized(TCCRCP) laser pulses. The results demonstrate that the dependence of the IAP generation on CEP stability is largely reduced in this scheme. IAP can be generated at most of CEPs. Therefore, the experiment requirements become lower.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB1104500the Science and Technology Project of Guangdong Province under Grant Nos 20148090903014,20158090920003,20168090917002 and20168090926004
文摘We demonstrate a self-starting erbium fiber oscillator-amplifier system based on the nonlinear polarization rota- tion mode-locked mechanism. The direct output pulse from the amplifier is 47fs with an average power of 1.22 W and a repetition rate of 50 MHz, corresponding to a pulse energy of 24 nJ. The full width at half-maximum of the spectrum of the output pulses is approximately 93nm at a central wavelength of 1572nm so that the transform- limited pulse duration is as short as 39 fs. Due to the imperfect dispersion compensation, we compress the pulses to 47fs in this experiment.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922402the National Key Scientific Instrument and Equipment Development Project under Grant No 2012YQ120047+1 种基金the Fundamental Research Funds for the Central Universities under Grant No JB140502the National Natural Science Foundation of China under Grant Nos 11174361 and61205130
文摘A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the repetition rate of 113 MHz. To the best of our knowledge, this is the shortest pulse duration ever produced from the Yb-doped orthosilicates lasers family.
基金Supported by the National Natural Science Foundation of China (Grant Nos.11764038,11864037,11765018,and 91850209)。
文摘We theoretically investigate the characteristics of terahertz(THz) radiation from monolayer graphene exposed to normal incident few-cycle laser pulses, by numerically solving the extended semiconductor Bloch equations. Our simulations show that the THz spectra in low frequency regions are highly dependent on the carrier envelope phase(CEP) of driving laser pulses. Using an optimal CEP of few-cycle laser pulses, we can obtain broadband strong THz waves, due to the symmetry breaking of the laser-graphene system. Our results also show that the strength of the THz spectra depend on both the intensity and central wavelength of the laser pulses. The intensity dependence of the THz wave can be described by the excitation rate of graphene, while wavelength dependence can be traced back to the band velocity and the population of graphene. We find that a near single-cycle THz pulse can be obtained from graphene driven by a mid-infrared laser pulse.
基金Supported by the National Natural Science Foundation of China under Grant No 11404204the Key Project of the Ministry of Education of China under Grant No 211025+1 种基金the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20111404120004the Natural Science Foundation for Young Scientists of Shanxi Province under Grant No 2009021005
文摘We propose an efficient method for the generation of an isolated attosecond pulse from the asymmetric molecular ions HeH^2+ by adding a half-cycle-like field (HCLF) to the fundamental driving laser field. The high-order harmonic generation (HHG) is investigated by numerically sowing the time-dependent Schrodinger equation. By performing the time-frequency distributions and the electronic wave packet probability densities, we find that the optimizing combined field is not only useful for extending the HHG cutoff, but also for simplifying the recombination channels through controlling the electron localization. In addition, by adjusting the intensity of the HCLF, a dominant short quantum path is selected to contribute the HHG spectrum. As a result, a 75-as isolated attosecond pulse is obtained by superposing a proper range of the harmonics.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11404204 and 11447208the Key Project of Chinese Ministry of Education under Grant No 211025+1 种基金the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20111404120004the Natural Science Foundation for Young Scientists of Shanxi Province under Grant No 2009021005
文摘The two-color circularly polarized pulses scheme was proposed to generate isolated attosecond pulses in our previous work [Phys. Rev. A 87 (2013) 043406], while the polarization of the attosecond pulse was not investigated. We show a supplementary explanation of this scheme and present another scheme to generate linear isolated attosecond pulses by combining a circularly polarized pulse with an elliptically polarized pulse. High-order harmonic generation and quantum path control are investigated to compare these two schemes. Both schemes can obtain supercontinuum spectra plateau from about 200eV to 550eV, which belong to the water window region. It is found that the latter scheme can clearly eliminate the short quantum path and extend the harmonic plateau. A linear isolated attosecond pulse with a duration of sub-6Oas can be generated by superposing a bandwidth of 70eV.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274326,61221064,61405222,11134010 and 11127901the Shanghai Sailing Program under Grant No 14YF1406200
文摘We study the energy scaling of terahertz (THz) emission through difference frequency generation of near-infrared pulses, and demonstrate that Gigawatt few-cycle THz transients at the central frequency of 30 THz are produced from GaSe crystal pumped by two pulses at 1.65 and 1.95 micrometers, with the high quantum yield of 28%. Our analysis indicates that the high yield of DFG originates from the largely reduced group velocity mismatch as the long-wavelength pumping pulses are employed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11305157)the Development Foundation of China Academy of Engineering Physics Laboratory(CAEPL)(Grant No.2013A0401019)
文摘Chirped wideband pump and seed pulses are usually considered for backward Raman amplification(BRA) in plasmas to achieve an extremely high-power laser pulse. However, current theoretical models only contain either a chirped pump or a chirped seed. In this paper, modified three-wave coupling equations are proposed for the BRA in the plasmas with both chirped wideband pump and seed. The simulation results can more precisely describe the experiments, such as the Princeton University experiment. The optimized chirp and bandwidth are determined based on the simulation to enhance the output intensity and efficiency.
基金Project supported by the Science Foundation of Baoji University of Arts and Sciences,China (Grant Nos.ZK10122,ZK11061,ZK11135,ZK11060,and ZK1032)the Natural Science Foundation of the Education Committee of Shaanxi Province,China(Grant No. 2010JK405)
文摘We theoretically present a method for generating an ultrabroad extreme ultraviolet (XUV) supercontinuum by using the combination of a multicycle chirped laser and a static electric field. At a low laser intensity, the spectral cutoff is extended to the 495th order harmonic, and the bandwidth of the supercontinuum spectrum is broadened to 535 eV. At a high laser intensity, the harmonic cutoff is enlarged to the 667th order, and a supercontinuum covering a bandwidth of 1035 eV is generated. In these two cases, the long quantum path is removed, and the short quantum path is selected. Especially for the relatively high laser intensity, an isolated 23-attosecond pulse with a bandwidth of about 170.6 eV is directly obtained. Finally, we also analyze the influences of the chirp parameter and the duration of the chirped pulse as well as the static field strength on the supereontinuum.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11271158,61575077,and 11574117)
文摘The generation of high-order harmonic and the attosecond pulse of the N2 molecule with an orthogonally polarized two-color laser field are investigated by the strong-field Lewenstein model.We show that the control of contributions to high-order harmonic generation(HHG) from different nuclei is realized by properly selecting the relative phase.When the relative phase is chosen to be φ= 0.4π,the contribution to HHG from one nucleus is much more than that from another.Interference between two nuclei can be suppressed greatly; a supercontinuum spectrum of HHG appears from 40 e V to125 e V.The underlying physical mechanism is well explained by the time–frequency analysis and the semi-classical threestep model with a finite initial transverse velocity.By superposing several orders of harmonics,an isolated attosecond pulse with a duration of 80 as can be generated.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575077)the Graduate Innovation Fund of Jilin University(Grant No.2017107)
文摘We investigate the spectral redshift of high-order harmonics of the H_2~+(D_2~+) molecule by numerically solving the non-Born–Oppenheimer time-dependent Schr ¨odinger equation(TDSE). The results show that the spectral redshift of highorder harmonics can be observed by adding a weak pulse in the falling part of the trapezoidal laser pulses. Comparing with the H_2~+ molecule, the shift of high-order harmonic generation(HHG) spectrum for the D_2~+ molecule is more obvious.We employ the spatial distribution in HHG and time-frequency analysis to illustrate the physical mechanism of the spectral redshift of high-order harmonics.
基金Project supported by the Fundamental Research Funds for the Central Universities of China(Grant No.30916011207)Chemical Sciences,Geosciences and Biosciences Division,Office of Basic Energy Sciences,Office of Science,U.S.Department of Energy(Grant No.DE-FG02-86ER13491)Air Force Office of Scientific Research,USA(Grant No.FA9550-14-1-0255)
文摘With the development of laser technologies,multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms.A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes.We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm.By choosing different fitness criteria,we demonstrate that:(i) harmonic yields can be enhanced by 10 to 100 times,(ii) harmonic cutoff energy can be substantially extended,(iii) specific harmonic orders can be selectively enhanced,and(iv) single attosecond pulses can be efficiently generated.The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed.The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2014AA041901the NSAF Foundation of National Natural Science Foundation of China under Grant No U1330134+1 种基金the Opening Project of Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques under Grant No 2012ADL02the National Natural Science Foundation of China under Grant No 61308024
文摘The wavelength-tunable rectangular mode-locking operation is demonstrated in an all-fiber laser based on semi- conductor saturable absorber mirror. As the dissipative soliton resonance signature, the pulse duration varies from 5SOps to 2.1 ns as a function o~ the increasing pump power. Correspondingly, the maximum pulse energy is 9.11 n3. Moreover, it is found that the wavelength tunable operation with a range of approximately 10 nm could be obtained by properly adjusting the polarization controllers. The characteristics of the rectangular pulses at different wavelengths are similar to each other. The demonstration of the wavelength tunable rectangular pulses would be beneficial to some applications for many fields such as spectroscopy and sensing research.
基金Supported by the National Natural Science Foundation of China under Grant No 61705183the Central University Special Fund Basic Research and Operating Expenses under Grant No GK201702005+1 种基金the Natural Science Foundation of Shaanxi Province under Grant No 2017JM6091the Fundamental Research Funds for the Central Universities under Grant No 2017TS011
文摘Using the reduced graphene oxide(rGO) as a saturable absorber(SA) in an Er-doped fiber(EDF) laser cavity,we obtain the Q-switching operation. The rGO SA is prepared by depositing the GO on fluorine mica(FM) using the thermal reduction method. The modulation depth of rGO/FM is measured to be 3.2%. By incorporating the rGO/FM film into the EDF laser cavity, we obtain stable Q-switched pulses. The shortest pulse duration is3.53 μs, and the maximum single pulse energy is 48.19 nJ. The long-term stability of working is well exhibited.The experimental results show that the rGO possesses potential photonics applications.
基金the National Natural Science Foundation of China(Grant Nos.11674268 and 11764038)the Natural Science Foundation of Guangdong Province,China(Grant No.2020A1515010927)Department of Education of Guangdong Province,China(Grant Nos.2018KCXTD011 and 2019KTSCX037).
文摘We present the recent new developments of time-dependent Schrödinger equation and time-dependent density-functional theory for accurate and efficient treatment of the electronic structure and time-dependent quantum dynamics of many-electron atomic and molecular systems in intense laser fields.We extend time-dependent generalized pseudospectral(TDGPS)numerical method developed for time-dependent wave equations in multielectron systems.The TDGPS method allows us to obtain highly accurate time-dependent wave functions with the use of only a modest number of spatial grid point for complex quantum dynamical calculations.The usefulness of these procedures is illustrated by a few case studies of atomic and molecular processes of current interests in intense laser fields,including multiphoton ionization,above-threshold ionization,high-order harmonic generation,attosecond pulse generation,and quantum dynamical processes related to multielectron effects.We conclude this paper with some open questions and perspectives of multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields.