An experimental platform of a pulse detonation engine(PDE) was established to study the effect of different K_2 CO_3 ionized seed mass contents on the detonation process.The pressure and ion concentration were detecte...An experimental platform of a pulse detonation engine(PDE) was established to study the effect of different K_2 CO_3 ionized seed mass contents on the detonation process.The pressure and ion concentration were detected in the detonation process of the PDE with different contents of ionized seeds.The initiation process of the PDE at different ignition frequencies was studied.The results show that the gas conductivity in the detonation process increased by adding ionized seeds to the PDE tube,and the conductivity increased with the increase in ionized seed mass content.With the increase in ionized seed mass content,the range of the conductivity decreased.The PDE was successfully ignited and formed a stable detonation wave at ignition frequencies of 5 Hz and 10 Hz,and the peak pressure of the stable detonation with the ignition frequency of 5 Hz was 17% higher than that with an ignition frequency of 10 Hz.The detonation wave intensity was weake ned and dege nerated to a shock wave that propagated in the tube without the fuel filled at the ignition frequency of 20 Hz.展开更多
Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are di...Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are dissipated into the gas as heat energy,some of them can be recycled during the expansion process in subsequent stages by the reheat effect,which should be helpful to improve the detonationdriven turbine efficiency.Taking this into account,this paper developed a numerical model of the detonation chamber coupled with a two-stage axial turbine,and a stoichiometric hydrogen-air mixture was used.The improvement in turbine efficiency attributable to the reheat effect was calculated by comparing the average efficiency of the stages with the efficiency of the two-stage turbine.The research indicated that the first stage was critical in suppressing the flow unsteadiness caused by pulse detonation,which stabilized the intake condition of the second stage and consequently allowed much of the flow losses from the first stage to be recycled,so that the efficiency of the two-stage turbine was improved.At a 95%confidence level,the efficiency improvement was stable at 4.5%—5.3%,demonstrating that the reheat effect is significant in improving the efficiency of the detonation-driven turbine.展开更多
The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper,...The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper, the evolution of the detonation wave and the distribution of its physical parameters were analyzed. The numerical results show that the change of axial velocity of gas is the same as that of detonation pressure. The larger the liquid droplet radius is, the longer the time to get stable detonation wave is. The calculated results coincide with the experimented results better.展开更多
基金supported by the National Natural Science Foundation of China(No.11802039,No.51605046)the Jiangsu Natural Science Foundation of China(No.BK20160406)。
文摘An experimental platform of a pulse detonation engine(PDE) was established to study the effect of different K_2 CO_3 ionized seed mass contents on the detonation process.The pressure and ion concentration were detected in the detonation process of the PDE with different contents of ionized seeds.The initiation process of the PDE at different ignition frequencies was studied.The results show that the gas conductivity in the detonation process increased by adding ionized seeds to the PDE tube,and the conductivity increased with the increase in ionized seed mass content.With the increase in ionized seed mass content,the range of the conductivity decreased.The PDE was successfully ignited and formed a stable detonation wave at ignition frequencies of 5 Hz and 10 Hz,and the peak pressure of the stable detonation with the ignition frequency of 5 Hz was 17% higher than that with an ignition frequency of 10 Hz.The detonation wave intensity was weake ned and dege nerated to a shock wave that propagated in the tube without the fuel filled at the ignition frequency of 20 Hz.
基金financially supported by the National Natural Science Foundation of China through Grant Nos.12372338 and U2241272the Natural Science Foundation of Shaanxi Province of China through Grant Nos.2023-JC-YB-352 and 2022JZ-20+1 种基金the Guangdong Basic and Applied Basic Research Foundation through Grant No.2023A1515011663the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University through Grant No.PF2023010。
文摘Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are dissipated into the gas as heat energy,some of them can be recycled during the expansion process in subsequent stages by the reheat effect,which should be helpful to improve the detonationdriven turbine efficiency.Taking this into account,this paper developed a numerical model of the detonation chamber coupled with a two-stage axial turbine,and a stoichiometric hydrogen-air mixture was used.The improvement in turbine efficiency attributable to the reheat effect was calculated by comparing the average efficiency of the stages with the efficiency of the two-stage turbine.The research indicated that the first stage was critical in suppressing the flow unsteadiness caused by pulse detonation,which stabilized the intake condition of the second stage and consequently allowed much of the flow losses from the first stage to be recycled,so that the efficiency of the two-stage turbine was improved.At a 95%confidence level,the efficiency improvement was stable at 4.5%—5.3%,demonstrating that the reheat effect is significant in improving the efficiency of the detonation-driven turbine.
基金Sponsored by the National Natural Science Foundation of China (10672080)
文摘The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper, the evolution of the detonation wave and the distribution of its physical parameters were analyzed. The numerical results show that the change of axial velocity of gas is the same as that of detonation pressure. The larger the liquid droplet radius is, the longer the time to get stable detonation wave is. The calculated results coincide with the experimented results better.
文摘在内径为110 mm的大管径爆震发动机模型上,以不同温度的煤油为燃料,空气为氧化剂,成功进行了脉冲爆震发动机(PDE)实验,并获得了爆震波;分别测试了在不同温度,相同频率下和相同温度,不同频率下,发动机性能(爆震波速、压力、起爆距离)的变化。实验发现燃油温度高低直接影响爆震效果,温度较高时,发动机较容易起爆,爆燃向爆震转变距离(Deflagration to Detonation Transition,简称DDT)缩短;在相同温度下,随着频率升高爆震波速下降。