期刊文献+
共找到207篇文章
< 1 2 11 >
每页显示 20 50 100
Anti-noise performance of the pulse coupled neural network applied in discrimination of neutron and gamma-ray 被引量:3
1
作者 Hao-Ran Liu Zhuo Zuo +3 位作者 Peng Li Bing-Qi Liu Lan Chang Yu-Cheng Yan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第6期89-101,共13页
In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,r... In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range. 展开更多
关键词 pulse coupled neural network Zero crossing Frequency gradient analysis Vector projection Charge comparison Neutron and gamma-ray discrimination pulse shape discrimination
在线阅读 下载PDF
Feature-Based Fusion of Dual Band Infrared Image Using Multiple Pulse Coupled Neural Network 被引量:1
2
作者 Yuqing He Shuaiying Wei +3 位作者 Tao Yang Weiqi Jin Mingqi Liu Xiangyang Zhai 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期129-136,共8页
To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)... To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges. 展开更多
关键词 infrared IMAGE IMAGE FUSION dual BAND pulse coupled neural network(pcnn) FEATURE extraction
在线阅读 下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
3
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
在线阅读 下载PDF
基于快速联合双边滤波器和改进PCNN的红外与可见光图像融合
4
作者 杨艳春 雷慧云 杨万轩 《红外技术》 CSCD 北大核心 2024年第8期892-901,共10页
针对红外与可见光图像融合结果中细节丢失、目标不显著和对比度低等问题,提出了一种结合快速联合双边滤波器(fast joint bilateral filter,FJBF)和改进脉冲耦合神经网络(pulse coupled neural network,PCNN)的红外与可见光图像融合方法... 针对红外与可见光图像融合结果中细节丢失、目标不显著和对比度低等问题,提出了一种结合快速联合双边滤波器(fast joint bilateral filter,FJBF)和改进脉冲耦合神经网络(pulse coupled neural network,PCNN)的红外与可见光图像融合方法,在保证融合图像质量的前提下有效提高运行效率。首先,利用快速联合双边滤波器对源图像进行分解;其次,为了更好地提取图像中显著结构和目标信息,针对基础层图像采用一种基于视觉显著图(visual significance map,VSM)的加权平均融合规则,针对细节层图像采用改进脉冲耦合神经网络模型进行融合,其中PCNN的所有参数都可以根据输入波段自适应调节;最后,将基础层融合图与细节层融合图叠加重构得到融合图像。实验结果表明,该方法提高了融合图像的效果,有效地保留了目标、背景细节和边缘等重要信息。 展开更多
关键词 图像处理 快速联合双边滤波器 脉冲耦合神经网络 红外与可见光图像 图像融合
在线阅读 下载PDF
基于遗传蚁群优化的PCNN改进中值滤波图像去噪方法
5
作者 朱雪梅 《科技创新与应用》 2024年第20期1-7,共7页
为实现数字图像自适应去噪,提出一种基于遗传蚁群算法(GACA)优化的脉冲耦合神经网络(PCNN)改进中值滤波混合图像去噪方法(GACA-PCNN-MF)。通过将遗传算法(GA)和蚁群算法(ACO)相结合使GA的计算结果用于增强ACO早期信息素,最终使ACO在正... 为实现数字图像自适应去噪,提出一种基于遗传蚁群算法(GACA)优化的脉冲耦合神经网络(PCNN)改进中值滤波混合图像去噪方法(GACA-PCNN-MF)。通过将遗传算法(GA)和蚁群算法(ACO)相结合使GA的计算结果用于增强ACO早期信息素,最终使ACO在正反馈机制中加速优化PCNN关键参数,然后使用优化后的PCNN改进中值滤波技术进行图像去噪处理。通过实验分析和定量计算与现有其他图像去噪技术对比,结果表明,提出的GACA-MF改进混合图像去噪方法的效果优于分别使用中值滤波算法和PCNN算法。可见,利用自适应的方式优化网络参数可以尽可能发掘PCNN的最大潜能。 展开更多
关键词 图像去噪 遗传蚁群算法 脉冲耦合神经网络 中值滤波 优化参数
在线阅读 下载PDF
基于全局能量特征与改进PCNN的红外与可见光图像融合
6
作者 邢延超 牛振华 《红外技术》 CSCD 北大核心 2024年第8期902-911,共10页
为了改善红外与可见光融合图像存在不清晰、图像对比度低以及缺少纹理细节的问题,本文提出了一种基于参数自适应脉冲耦合神经网络(parameter-adaptive pulse-coupled neural network,PAPCNN)图像融合算法。首先,对源红外图像进行暗通道... 为了改善红外与可见光融合图像存在不清晰、图像对比度低以及缺少纹理细节的问题,本文提出了一种基于参数自适应脉冲耦合神经网络(parameter-adaptive pulse-coupled neural network,PAPCNN)图像融合算法。首先,对源红外图像进行暗通道去雾,增强图像的清晰度;然后,使用非下采样剪切波变换(non-subsampled shearlet transform,NSST)分解源图像,使用全局能量特征结合改进的空间频率自适应权重融合低频系数,将纹理能量作为PA-PCNN外部输入融合高频系数;最后,通过逆NSST变换得到最终融合灰度图像。本文方法与7种经典算法在2组图像中进行对比实验,实验结果表明:本文方法在评价指标中明显优于对比算法,提高了融合图像的清晰度和细节信息,验证了本文方法的有效性。将灰度图像转为伪彩色图像进一步增强了融合图像的辨识度和人眼的感知效果。 展开更多
关键词 图像融合 非下采样剪切波变换 全局能量特征 纹理能量 脉冲耦合神经网络
在线阅读 下载PDF
基于NSCT和PCNN的红外与可见光图像融合方法 被引量:48
7
作者 李美丽 李言俊 +1 位作者 王红梅 张科 《光电工程》 CAS CSCD 北大核心 2010年第6期90-95,共6页
提出了一种基于非采样Contourlet变换(NSCT)和脉冲耦合神经网络(PCNN)的红外与可见光图像融合方法。首先用NSCT对已配准的源图像进行分解,得到低频子带系数和各带通子带系数;其次对低频子带系数采取一种基于边缘的方法以得到融合图像的... 提出了一种基于非采样Contourlet变换(NSCT)和脉冲耦合神经网络(PCNN)的红外与可见光图像融合方法。首先用NSCT对已配准的源图像进行分解,得到低频子带系数和各带通子带系数;其次对低频子带系数采取一种基于边缘的方法以得到融合图像的低频子带系数;对各带通子带系数提出了一种改进的基于PCNN的图像融合方法来确定融合图像的各带通子带系数;最后经过NSCT逆变换得到融合图像。实验结果表明,本文方法优于Laplacian方法、小波方法和传统的NSCT方法。 展开更多
关键词 图像融合 非采样CONTOURLET变换 脉冲耦合神经网络 链接强度
在线阅读 下载PDF
NSCT域内基于改进PCNN和区域能量的多光谱和全色图像融合方法 被引量:22
8
作者 李新娥 任建岳 +3 位作者 吕增明 沙巍 张立国 何斌 《红外与激光工程》 EI CSCD 北大核心 2013年第11期3096-3102,共7页
针对多光谱和全色图像的融合,提出了一种NSCT域内基于改进脉冲耦合神经网络(PCNN)和区域能量的融合方法。首先,利用NSCT将图像分解为一个低频子带和多个不同方向的带通子带。然后,对分解后的低频子带采用基于区域能量的自适应加权算法... 针对多光谱和全色图像的融合,提出了一种NSCT域内基于改进脉冲耦合神经网络(PCNN)和区域能量的融合方法。首先,利用NSCT将图像分解为一个低频子带和多个不同方向的带通子带。然后,对分解后的低频子带采用基于区域能量的自适应加权算法进行融合;在带通方向子带,结合改进的脉冲耦合神经网络,使用带通方向子带系数作为PCNN的外部输入激励,经过PCNN点火获得待融合图像的点火映射图,根据点火时间计算点火映射图的区域能量,通过判决算子选择待融合图像的带通方向子带系数作为融合系数。最后,对融合处理后的NSCT变换系数进行重构生成融合图像。实验结果显示:在迭代次数为100次时,与改进小波算法相比,标准差提高了9.48%,熵提高了0.95%,相关系数提高了21.56%,偏差指数降低了29.66%;与Contourlet算法相比,标准差提高了9.73%,熵提高了0.94%,相关系数提高了11.27%,偏差指数降低了9.45%;与NSCT算法相比,标准差提高了3.84%,熵提高了3.34%,相关系数提高了7.89%,偏差指数降低了7.42%。 展开更多
关键词 图像融合 非下采样CONTOURLET变换 脉冲耦合神经网络 区域能量
在线阅读 下载PDF
基于NSST和自适应PCNN的图像融合算法 被引量:37
9
作者 江平 张强 +1 位作者 李静 张锦 《激光与红外》 CAS CSCD 北大核心 2014年第1期108-113,共6页
针对红外和可见光图像的特点,本文提出了一种基于非下采样剪切波变换(NSST)和自适应的脉冲耦合神经网络(PCNN)相结合的红外与可见光图像融合的新算法。对经过NSST变换后的低频子带系数采用带高斯权重分布矩阵的局域方差和方差匹配度相... 针对红外和可见光图像的特点,本文提出了一种基于非下采样剪切波变换(NSST)和自适应的脉冲耦合神经网络(PCNN)相结合的红外与可见光图像融合的新算法。对经过NSST变换后的低频子带系数采用带高斯权重分布矩阵的局域方差和方差匹配度相结合的融合规则,对高频子带系数采用一种改进的空间频率作为PCNN输入,且采用改进的拉普拉斯能量和作为PCNN的链接强度,利用PCNN全局耦合性和脉冲同步性选择高频子带系数,最后经NSST逆变换后得到融合结果。实验结果表明,本文提出的算法与传统的图像融合算法相比不仅在主观视觉上取得较好的效果,而且在客观标准上也有了一定的提高。 展开更多
关键词 关键词 图像融合 非下采样剪切波变换(NSST) 脉冲耦合神经网络(pcnn) 空间频率 拉普拉斯能量和
在线阅读 下载PDF
一种简化PCNN模型在彩色图像边缘检测上的应用 被引量:9
10
作者 邵晓鹏 钟宬 +1 位作者 王杨 黄远辉 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2012年第6期1-9,共9页
提出了一种改进的彩色图像边缘检测方法来克服传统方法不考虑色度信息及噪声影响而产生漏检、错检边缘的不足.通过提取图像的颜色主轴来综合表示图像的亮度和色度信息,并将彩色图像降维成包含色度信息的灰度图像用以检测;为了降低噪声... 提出了一种改进的彩色图像边缘检测方法来克服传统方法不考虑色度信息及噪声影响而产生漏检、错检边缘的不足.通过提取图像的颜色主轴来综合表示图像的亮度和色度信息,并将彩色图像降维成包含色度信息的灰度图像用以检测;为了降低噪声对检测结果的影响,采用脉冲耦合神经网络(PCNN)模型.由于PCNN模型中的参数过多,不利于控制,故使用简化的PCNN模型来减少参数,达到比较好的控制.实验表明,这种基于颜色主轴的PCNN彩色图像边缘检测方法不仅能准确得到彩色图像的边缘信息,而且对噪声有很强的抑制作用. 展开更多
关键词 边缘检测 图像处理 颜色主轴 脉冲耦合神经网络
在线阅读 下载PDF
一种基于简化PCNN的自适应图像分割方法 被引量:58
11
作者 毕英伟 邱天爽 《电子学报》 EI CAS CSCD 北大核心 2005年第4期647-650,共4页
近年来的研究表明,脉冲耦合神经网络(PulseCoupledNeuralNetwork ,PCNN)可有效地用于图像分割.然而对于不同图像,常需要选取适当的网络参数,以得到有效的分割结果.但是,目前网络参数的选取还主要停留在人工调整和确定阶段,尚无一种能够... 近年来的研究表明,脉冲耦合神经网络(PulseCoupledNeuralNetwork ,PCNN)可有效地用于图像分割.然而对于不同图像,常需要选取适当的网络参数,以得到有效的分割结果.但是,目前网络参数的选取还主要停留在人工调整和确定阶段,尚无一种能够根据图像本身特性自动确定参数的方法,这在很大程度上限制了PCNN的应用.针对这一问题,本文提出了一种基于简化PCNN的自适应图像分割方法,通过利用图像本身空间和灰度特性自动确定网络参数,实现对不同图像的分割.实验结果表明,本文算法可以有效地对不同图像进行自动分割,具有一定的健壮性. 展开更多
关键词 脉冲耦合神经网络(pcnn) 自适应 参数确定 图像自动分割
在线阅读 下载PDF
基于PCNN的图像融合新方法 被引量:16
12
作者 余瑞星 朱冰 张科 《光电工程》 EI CAS CSCD 北大核心 2008年第1期126-130,共5页
本文提出了一种基于PCNN的新型图像融合算法。首先,对待融合的两幅图像进行平稳小波分解得到两组多尺度图像;接着,取其中任意一组作为主PCNN的输入、另一组相应的图像作为从PCNN的输入,在每次迭代时,经并行PCNN点火后,得到一系列多尺度... 本文提出了一种基于PCNN的新型图像融合算法。首先,对待融合的两幅图像进行平稳小波分解得到两组多尺度图像;接着,取其中任意一组作为主PCNN的输入、另一组相应的图像作为从PCNN的输入,在每次迭代时,经并行PCNN点火后,得到一系列多尺度融合图像;然后,对它们进行平稳小波反变换得到每次迭代的融合结果;最后,计算每次迭代结果的信息熵,取信息熵值最大的融合图像作为最终结果。大量的实验以及与其它融合算法的比较分析,表明了本文算法的有效性和优越性。 展开更多
关键词 图像融合 脉冲耦合神经网络 平稳小波变换
在线阅读 下载PDF
一种自适应PCNN多聚焦图像融合新方法 被引量:36
13
作者 苗启广 王宝树 《电子与信息学报》 EI CSCD 北大核心 2006年第3期466-470,共5页
该文通过分析脉冲耦合神经网络(PCNN)参数模型,结合多聚焦图像的基本特点和人眼视觉特性,提出了一种自适应PCNN多聚焦图像融合的新方法。该方法使用图像逐像素的清晰度作为PCNN对应神经元的链接强度β,经过PCNN点火获得每幅参与融合图... 该文通过分析脉冲耦合神经网络(PCNN)参数模型,结合多聚焦图像的基本特点和人眼视觉特性,提出了一种自适应PCNN多聚焦图像融合的新方法。该方法使用图像逐像素的清晰度作为PCNN对应神经元的链接强度β,经过PCNN点火获得每幅参与融合图像的点火映射图,再通过判决选择算子,判定并选择各参与融合图像中的清晰部分生成融合图像。该方法中,其它参数如阈值调整常量△等对于融合结果影响很小,解决了PCNN方法的参数调整困难的问题。实验结果表明,该方法的融合效果优于小波变换方法和Laplace塔型方法。 展开更多
关键词 图像融合 脉冲耦合神经网络 清晰度 链接强度 点火映射图
在线阅读 下载PDF
基于PCNN的图像二值化及分割评价方法 被引量:13
14
作者 马义德 苏茂君 陈锐 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第5期49-53,共5页
针对目前图像二值化方法通用性不强、自适应阈值选取难,以及单一图像分割评价缺乏可靠性的问题,对基于脉冲耦合神经网络(PCNN)的图像二值化方法及其参数选择进行了研究,提出了一种综合考虑多种评价准则的用于评价图像分割效果的方法.实... 针对目前图像二值化方法通用性不强、自适应阈值选取难,以及单一图像分割评价缺乏可靠性的问题,对基于脉冲耦合神经网络(PCNN)的图像二值化方法及其参数选择进行了研究,提出了一种综合考虑多种评价准则的用于评价图像分割效果的方法.实验结果表明:基于PCNN的二值化方法非常适合于各类图像的分割,具有分割精度高的特点;与单一评价方法相比,文中的综合评价方法能够更加客观准确地反映分割方法的分割效果. 展开更多
关键词 脉冲耦合神经网络 二值化 图像分割 评价准则
在线阅读 下载PDF
基于最大熵和PCNN的图像分割新方法 被引量:12
15
作者 朱冰 祝小平 余瑞星 《红外技术》 CSCD 北大核心 2008年第5期259-262,267,共5页
针对脉冲耦合神经网络(PCNN)无法确定最优分割以及脉冲门限具有非线性因子的问题,提出了一种基于最大熵和脉冲耦合神经网络的新型图像分割算法。该算法采用线性方式动态调整脉冲门限,采用最大熵确定PCNN网络的循环迭代次数,并引用均值... 针对脉冲耦合神经网络(PCNN)无法确定最优分割以及脉冲门限具有非线性因子的问题,提出了一种基于最大熵和脉冲耦合神经网络的新型图像分割算法。该算法采用线性方式动态调整脉冲门限,采用最大熵确定PCNN网络的循环迭代次数,并引用均值滤波的思想对PCNN的接收部分进行了改良,以克服噪声对分割过程的影响。实验结果表明该方法能获得视觉效果较好的分割结果并具有较强的普适性。 展开更多
关键词 图像分割 脉冲耦合神经网络 最大熵
在线阅读 下载PDF
PCNN模型在彩色图像分割中的应用 被引量:3
16
作者 程丹松 刘晓芳 +3 位作者 金野 魏子尧 唐降龙 刘家锋 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第3期58-62,共5页
针对脉冲耦合神经网络(PCNN)模型主要应用于灰度图像处理的局限性,利用脉冲发生器将颜色信息引入模型作为输入,与灰度信息共同控制神经元的内部行为,控制等灰度值的不同颜色区域分期点火,实现彩色图像的精确分割.双输入PCNN模型实现了... 针对脉冲耦合神经网络(PCNN)模型主要应用于灰度图像处理的局限性,利用脉冲发生器将颜色信息引入模型作为输入,与灰度信息共同控制神经元的内部行为,控制等灰度值的不同颜色区域分期点火,实现彩色图像的精确分割.双输入PCNN模型实现了彩色图像的分割,同时保持了PCNN模型对噪声的鲁棒性,从简单的仿真图像和实际图像两方面验证了此分割方法的有效性. 展开更多
关键词 脉冲耦合神经网络(pcnn) 图像分割 彩色图像
在线阅读 下载PDF
一种基于改进型PCNN的织物疵点图像自适应分割方法 被引量:13
17
作者 祝双武 郝重阳 《电子学报》 EI CAS CSCD 北大核心 2012年第3期611-616,共6页
针对传统脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)模型中网络参数多、不易自动选取的问题,本文在对PCNN模型进行改进的基础上,提出了一种基于改进型PCNN织物疵点图像自适应分割方法.采用了一种基于分割区域内均匀度差异最... 针对传统脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)模型中网络参数多、不易自动选取的问题,本文在对PCNN模型进行改进的基础上,提出了一种基于改进型PCNN织物疵点图像自适应分割方法.采用了一种基于分割区域内均匀度差异最小作为最佳迭代次数判断标准,从而有效地满足了PCNN对织物疵点图像的自动分割要求.通过对不同疵点图像分割实验证明了算法对疵点分割的准确性和有效性. 展开更多
关键词 脉冲耦合神经网络 织物疵点 图像分割 区域内均匀度
在线阅读 下载PDF
一种基于改进PCNN模型的图像分割方法 被引量:4
18
作者 程丹松 刘晓芳 +2 位作者 唐降龙 刘家锋 黄剑华 《高技术通讯》 CAS CSCD 北大核心 2007年第12期1228-1233,共6页
通过对传统脉冲耦合神经网络(PCNN)模型的改进,在模型的输入端加入目标区域的边缘数据,使最高灰度级不同的非连通神经元同期点火,实现了多目标区域同时分割。给出了影响同期点火激励范围的主要参数β的自动设定方法,并设计了基于图像最... 通过对传统脉冲耦合神经网络(PCNN)模型的改进,在模型的输入端加入目标区域的边缘数据,使最高灰度级不同的非连通神经元同期点火,实现了多目标区域同时分割。给出了影响同期点火激励范围的主要参数β的自动设定方法,并设计了基于图像最大熵准则的自动分割算法。用分割精度评价准则验证了所提出方法的有效性。实验证明,对于低噪声污染的图像,改进的PCNN模型在多目标识别中的正确接受率达到95%以上,明显优于经典的Fastlinking模型。 展开更多
关键词 脉冲耦合神经网络(pcnn) 图像自动分割 参数确定 多目标
在线阅读 下载PDF
基于PCNN区域分割的图像邻域去噪算法 被引量:6
19
作者 毛瑞全 宫霄霖 刘开华 《光电工程》 CAS CSCD 北大核心 2010年第2期122-127,共6页
针对小波图像去噪方法中使用的NeighShrink方法,本文提出了一种有效的保护图像边缘的图像去噪算法。主要改进了NeighShrink方法中固定的邻域范围,根据图像自身的性质,自适应分割成不同的邻域对图像进行去噪处理;并进一步结合小波层内相... 针对小波图像去噪方法中使用的NeighShrink方法,本文提出了一种有效的保护图像边缘的图像去噪算法。主要改进了NeighShrink方法中固定的邻域范围,根据图像自身的性质,自适应分割成不同的邻域对图像进行去噪处理;并进一步结合小波层内相关性,对各个不规则邻域加上固定的窗口,选择了几何距离更为接近且在同一不规则邻域内的系数,以完善NeighShrink方法。该算法采取平稳小波对含噪图像进行分解,以保持相位不变性,并对低频子带利用脉冲耦合神经网络模型进行图像分割,按照一定的规则将性质相似的像素点相接,得到原图像分割后的信息。在处理过程中利用得到的分割信息对边缘予以保护。实验结果表明,该方法在降低了图像噪声的同时又尽可能地保留了图像的边缘信息,是一种有效的去噪方法。 展开更多
关键词 图像去噪 脉冲耦合神经网络 图像分割 自适应邻域
在线阅读 下载PDF
提升静态小波与自适应PCNN相结合的图像融合算法 被引量:8
20
作者 郭茂耘 李华锋 柴毅 《光电工程》 CAS CSCD 北大核心 2010年第12期67-74,共8页
提出了一种新的基于提升静态小波变换与自适应PCNN相结合的图像融合算法。该方法定义一种图像单个像素的清晰度作为PCNN的链接强度,使得PCNN能根据像素清晰度的变化来自适应地调整链接强度的大小,接着对图像经提升静态小波分解得到的低... 提出了一种新的基于提升静态小波变换与自适应PCNN相结合的图像融合算法。该方法定义一种图像单个像素的清晰度作为PCNN的链接强度,使得PCNN能根据像素清晰度的变化来自适应地调整链接强度的大小,接着对图像经提升静态小波分解得到的低频子带系数的改进拉普拉斯能量和及高频子带系数的单个像素的灰度值,分别作为自适应PCNN神经元的外部输入,并根据点火次数来确定图像融合系数。最后由提升静态小波变换的逆变换得到融合图像。实验表明,该方法在视觉效果和客观评价指标上都优于传统的基于小波变换、提升静态小波变换、提升静态小波-PCNN的图像融合算法。 展开更多
关键词 图像融合 提升静态小波 脉冲耦合神经网络 拉普拉斯能量和
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部