正交时频空(orthogonal time frequency space,OTFS)调制在高多普勒环境下可实现可靠通信,适用于卫星通信等高动态场景。然而,其峰值与平均功率比(peak-to-average power ratio,PAPR)易超出功放线性范围,导致非线性失真。部分传输序列(p...正交时频空(orthogonal time frequency space,OTFS)调制在高多普勒环境下可实现可靠通信,适用于卫星通信等高动态场景。然而,其峰值与平均功率比(peak-to-average power ratio,PAPR)易超出功放线性范围,导致非线性失真。部分传输序列(partial transfer sequence,PTS)算法通过对数据符号分块再选取合适的旋转因子可以抑制PAPR。为提高PTS算法抑制PAPR的能力,提出了一种基于改进的灰狼优化(improved grey wolf optimizer,IGWO)算法的PTS算法,即IGWO-PTS算法,以适应离散组合优化问题并获得更优的子块划分方案,从而获得更好的PAPR抑制能力。推导证明了当相位旋转因子集合元素具有旋转对称性时,相位旋转因子组合空间可以收缩为原来的1 K(K为集合中元素个数),极大程度上降低了系统复杂度。仿真实验表明,IGWO-PTS算法相对于传统算法具有更好的PAPR抑制性能,并且在星地高动态场景下可以保持良好的传输可靠性。展开更多
Because the conventional ultra wideband(UWB) radar imaging algorithm cannot meet the demand in the capability of multiple targets detection,a novel UWB radar imaging algorithm based on the near field radiation theor...Because the conventional ultra wideband(UWB) radar imaging algorithm cannot meet the demand in the capability of multiple targets detection,a novel UWB radar imaging algorithm based on the near field radiation theory of dipole is presented.On the foundation of researching the principle of a time domain imaging algorithm,the back projection(BP) algorithm is derived and analyzed.Firstly,the far field sampling data are transferred to the near field sampling data by using the near field radiation theory of dipole.Then the BP algorithm is applied to target detection.The capability of the new algorithm to detect the multi-target is verified by using the finite-difference time-domain method,and the threedimensional images of targets are obtained.The coupling effect between targets for imaging is analyzed.The simulation results show that the new UWB radar imaging algorithm based on the near field radiation theory of dipole could weaken the coupling effect for imaging,and as a result the quality of imaging is improved.展开更多
文摘正交时频空(orthogonal time frequency space,OTFS)调制在高多普勒环境下可实现可靠通信,适用于卫星通信等高动态场景。然而,其峰值与平均功率比(peak-to-average power ratio,PAPR)易超出功放线性范围,导致非线性失真。部分传输序列(partial transfer sequence,PTS)算法通过对数据符号分块再选取合适的旋转因子可以抑制PAPR。为提高PTS算法抑制PAPR的能力,提出了一种基于改进的灰狼优化(improved grey wolf optimizer,IGWO)算法的PTS算法,即IGWO-PTS算法,以适应离散组合优化问题并获得更优的子块划分方案,从而获得更好的PAPR抑制能力。推导证明了当相位旋转因子集合元素具有旋转对称性时,相位旋转因子组合空间可以收缩为原来的1 K(K为集合中元素个数),极大程度上降低了系统复杂度。仿真实验表明,IGWO-PTS算法相对于传统算法具有更好的PAPR抑制性能,并且在星地高动态场景下可以保持良好的传输可靠性。
基金supported by the Key Laboratory of Millimeter Waves of China (K200907)
文摘Because the conventional ultra wideband(UWB) radar imaging algorithm cannot meet the demand in the capability of multiple targets detection,a novel UWB radar imaging algorithm based on the near field radiation theory of dipole is presented.On the foundation of researching the principle of a time domain imaging algorithm,the back projection(BP) algorithm is derived and analyzed.Firstly,the far field sampling data are transferred to the near field sampling data by using the near field radiation theory of dipole.Then the BP algorithm is applied to target detection.The capability of the new algorithm to detect the multi-target is verified by using the finite-difference time-domain method,and the threedimensional images of targets are obtained.The coupling effect between targets for imaging is analyzed.The simulation results show that the new UWB radar imaging algorithm based on the near field radiation theory of dipole could weaken the coupling effect for imaging,and as a result the quality of imaging is improved.