With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ...With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.展开更多
Expert System (ES) is considered effective and efficient in agricultural production, as agricultural informationization becomes a main trend in agricultural development. ES, however, is applied unsatisfactorily in m...Expert System (ES) is considered effective and efficient in agricultural production, as agricultural informationization becomes a main trend in agricultural development. ES, however, is applied unsatisfactorily in most rural areas of China and it has considerably affected and restricted the development of the agricultural informationization. This paper proposed a solution to voice service system of ES, which was suitable for the information transmission, and it especially could help the peasants in remote regions obtain knowledge from ES through the voice service system. As for the disadvantages of massive knowledge data and slow deduction, in this system the classification method could be adopted based on the decision tree. Designing pruning algorithm to "trim off" the unrelated knowledge to the users in query course would simplify the structure of the decision tree and accelerate the speed of deduction before the inference engine deduced the knowledge required by users.展开更多
The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in p...The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem.展开更多
基金supported by the National Natural Science Foundation of China(61703228)
文摘With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.
基金Supported by Northeast Agricultural University Doctoral Development FoundationChina Postdoctoral Science Foundation
文摘Expert System (ES) is considered effective and efficient in agricultural production, as agricultural informationization becomes a main trend in agricultural development. ES, however, is applied unsatisfactorily in most rural areas of China and it has considerably affected and restricted the development of the agricultural informationization. This paper proposed a solution to voice service system of ES, which was suitable for the information transmission, and it especially could help the peasants in remote regions obtain knowledge from ES through the voice service system. As for the disadvantages of massive knowledge data and slow deduction, in this system the classification method could be adopted based on the decision tree. Designing pruning algorithm to "trim off" the unrelated knowledge to the users in query course would simplify the structure of the decision tree and accelerate the speed of deduction before the inference engine deduced the knowledge required by users.
基金supported by the National Natural Science Foundation of China(50576033)
文摘The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem.