期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于WPG-KNMF的非线性动态过程监控研究
1
作者 张成 邓成龙 李元 《控制理论与应用》 北大核心 2025年第3期569-578,共10页
针对非线性动态过程故障检测问题,本文提出一种基于Wasserstein距离投影梯度核非负矩阵分解(WPGKN-MF)的故障检测方法.首先,采用投影梯度方法对KNMF的基矩阵和系数矩阵进行更新.其次,在高维特征空间中,使用Wasserstein距离结合滑动窗口... 针对非线性动态过程故障检测问题,本文提出一种基于Wasserstein距离投影梯度核非负矩阵分解(WPGKN-MF)的故障检测方法.首先,采用投影梯度方法对KNMF的基矩阵和系数矩阵进行更新.其次,在高维特征空间中,使用Wasserstein距离结合滑动窗口方法,构造新的统计量进行故障检测.本文方法将KNMF中迭代方法改进为投影梯度方法,通过KNMF将数据的非线性结构捕获,并结合Wasserstein距离消除样本间自相关性影响.通过一个数值例子和基于工业控制系统执行器诊断方法的开发与应用(DAMADICS)过程的实验数据进行仿真实验,与传统核主成分分析(KPCA)、核非负矩阵分解等方法进行对比,仿真结果验证了本文所提方法的有效性. 展开更多
关键词 核非负矩阵分解 非线性过程 动态过程 投影梯度 Wasserstein距离 故障检测
在线阅读 下载PDF
两阶段非负矩阵分解算法及其在光谱解混中的应用
2
作者 杨颂 张新元 +1 位作者 刘晓 孙莉 《山东农业大学学报(自然科学版)》 北大核心 2024年第3期422-426,共5页
非负矩阵分解问题(nonnegative matrix factorization,NMF)模型已成功应用至高光谱遥感影像处理中的光谱解混工作,由于NMF优化模型具有多个局部极小点,使得分解结果不稳定。设计初始化方法或者选择带正则项的问题模型是提高分解精度的... 非负矩阵分解问题(nonnegative matrix factorization,NMF)模型已成功应用至高光谱遥感影像处理中的光谱解混工作,由于NMF优化模型具有多个局部极小点,使得分解结果不稳定。设计初始化方法或者选择带正则项的问题模型是提高分解精度的两种常用方法。本文提出了两阶段的NMF算法,实现了初始点选取和正则项设计的结合。第一阶段借助k-均值获得k个聚类中心,给出迭代的初始点;利用第一阶段的初始矩阵U^(0),定义了针对端元矩阵的正则项‖U-U^(0)‖_(F)^(2),第二阶段采用基于交替非负最小二乘框架的投影梯度算法,求解新的正则化NMF问题。正则项中的端元初始矩阵U^(0)除了采用k-均值获得k个聚类中心,也可采用真实地物光谱,它的引入提高了算法的灵活度。数值结果表明新算法更加稳定,且分解的精确性有效提高。 展开更多
关键词 非负矩阵分解 正则项 投影梯度法 光谱解混
在线阅读 下载PDF
采用改进投影梯度非负矩阵分解和非采样Contourlet变换的图像融合方法 被引量:20
3
作者 杨粤涛 朱明 +1 位作者 贺柏根 高文 《光学精密工程》 EI CAS CSCD 北大核心 2011年第5期1143-1150,共8页
针对非负矩阵分解(NMF)算法时间复杂度较高,而投影梯度(PG)优化方法可以大幅降低NMF约束优化迭代问题的时间复杂度,提出一种基于改进的投影梯度NMF(IPGNMF)和非采样Contourlet变换(NSCT)相结合的图像融合方法。采用NSCT对已配准的源图... 针对非负矩阵分解(NMF)算法时间复杂度较高,而投影梯度(PG)优化方法可以大幅降低NMF约束优化迭代问题的时间复杂度,提出一种基于改进的投影梯度NMF(IPGNMF)和非采样Contourlet变换(NSCT)相结合的图像融合方法。采用NSCT对已配准的源图像进行多尺度、多方向的分解,将分解后的低频部分作为原始数据,利用IPGNMF得到包含特征基的低通子带系数;高频部分应用了一种基于邻域一致性测度(NHM)的局部自适应融合规则得到各带通方向子带系数。经过NSCT逆变换得到融合图像。实验结果表明,融合结果在主观和客观评价上均优于NSWT方法、IPGNMF方法和NSCT方法。与NSCT法相比,实验所采用的两组图像的信息熵、清晰度和Q指标分别提高了0.0627%、0.901%、3.120 1%和2.769%、2.203%、1.049%。 展开更多
关键词 图像融合 非负矩阵分解 投影梯度 非采样CONTOURLET变换
在线阅读 下载PDF
改进投影梯度非负矩阵分解的单训练样本特征提取研究 被引量:13
4
作者 高涛 何明一 《电子与信息学报》 EI CSCD 北大核心 2010年第5期1121-1125,共5页
人脸识别是当前人工智能和模式识别的研究热点。非负矩阵分解(NMF)能够反映样本的局部的内在的联系,可用于单样本特征提取,但时间复杂度较高。投影梯度(Projected Gradient,PG)优化方法大幅降低了NMF约束优化迭代问题的时间复杂度,但是... 人脸识别是当前人工智能和模式识别的研究热点。非负矩阵分解(NMF)能够反映样本的局部的内在的联系,可用于单样本特征提取,但时间复杂度较高。投影梯度(Projected Gradient,PG)优化方法大幅降低了NMF约束优化迭代问题的时间复杂度,但是单训练样本存在对本类信息量描述不足的缺点。为此,该文提出了一种基于改进的投影梯度非负矩阵分解(Improved Projected Gradient Non-negative Matrix Factorization,IPGNMF)的单训练样本特征提取方法。在进行PGNMF算子之前,先将训练样本作Gabor分解,分解后的Gabor子图像在各个方向上可以更加丰富的描述样本特征,最后将各个Gabor子图像的PGNMF特征进行融合,作为最终的识别特征。在对人脸库ORL,YEL与FERET的识别实验中,与经典的特征提取方法比较,证明了可以有效地解决单训练样本人脸识别的问题。 展开更多
关键词 人脸识别 非负矩阵分解 投影梯度非负矩阵分解 径向基网络
在线阅读 下载PDF
一种基于L_1稀疏正则化和非负矩阵分解的盲源信号分离新算法 被引量:7
5
作者 殷海青 刘红卫 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第5期835-841,共7页
针对线性混合模型下的盲源分离这一反问题,提出了一种结合迭代正则化和非负矩阵分解的交替最小化算法.首先把该问题转化为有界约束的二次规划,然后采用了一种自适应BB(Barzilai-Borwein)步长的投影梯度算法来求解.该方法不仅可减少存储... 针对线性混合模型下的盲源分离这一反问题,提出了一种结合迭代正则化和非负矩阵分解的交替最小化算法.首先把该问题转化为有界约束的二次规划,然后采用了一种自适应BB(Barzilai-Borwein)步长的投影梯度算法来求解.该方法不仅可减少存储量,提高算法速度,而且还很好地刻画了信号的稀疏性和独立性.理论分析和数值试验都验证了该方法的有效性,对混合的二维图像能提高分离的信干比. 展开更多
关键词 盲源信号分离 反问题 非负矩阵分解 投影梯度算法 信干比
在线阅读 下载PDF
基于投影梯度的非负矩阵分解盲信号分离算法 被引量:7
6
作者 李煜 何世钧 《计算机工程》 CAS CSCD 北大核心 2016年第2期104-107,112,共5页
在盲信号分离过程中,基于乘性迭代的非负矩阵分解(NMF)存在运算量大、收敛速度慢等问题。为此,在投影梯度法的基础上提出一种新的NMF盲信号分离算法。通过增加行列式约束、稀疏度约束和相关性约束条件,将最优化问题转化为交替的最小二... 在盲信号分离过程中,基于乘性迭代的非负矩阵分解(NMF)存在运算量大、收敛速度慢等问题。为此,在投影梯度法的基础上提出一种新的NMF盲信号分离算法。通过增加行列式约束、稀疏度约束和相关性约束条件,将最优化问题转化为交替的最小二乘问题,将投影梯度法应用于基于约束的NMF盲信号分离过程。仿真结果表明,该算法能减小重构误差,在维持源分离信号稀疏性的基础上实现混合信号的唯一分解。与经典NMF算法和NMFDSC算法相比,其收敛和分解速度更快,重构信号的信噪比更高。 展开更多
关键词 盲信号分离 非负矩阵分解 乘性迭代 交替最小二乘法 投影梯度
在线阅读 下载PDF
基于B(2D)~2PGNMF的ISAR像目标识别 被引量:2
7
作者 王芳 盛卫星 +1 位作者 马晓峰 王昊 《南京理工大学学报》 EI CAS CSCD 北大核心 2013年第6期863-868,901,共7页
为了更好地利用逆合成孔径雷达(ISAR)像目标的局部空间结构信息和类别信息实现目标识别,该文提出了一种基于分块双向二维投影梯度非负矩阵分解(B(2D)2PGNMF)的ISAR像目标识别方法。采用基向量非负加权组合的形式构建目标像。将B(2D)2PG... 为了更好地利用逆合成孔径雷达(ISAR)像目标的局部空间结构信息和类别信息实现目标识别,该文提出了一种基于分块双向二维投影梯度非负矩阵分解(B(2D)2PGNMF)的ISAR像目标识别方法。采用基向量非负加权组合的形式构建目标像。将B(2D)2PGNMF分解得到的权向量作为特征,通过最近邻分类器完成五类飞机目标的识别。仿真结果表明:在相同的压缩率或相同的基矩阵维数下,二维投影梯度非负矩阵分解(PGNMF)算法比一维PGNMF算法具有更高的识别精度,分块投影梯度非负矩阵分解(BPGNMF)算法的识别结果优于PGNMF算法,B(2D)2PGNMF算法的识别结果优于双向二维投影梯度非负矩阵分解((2D)2PGNMF)算法。在相同的基矩阵维数下,二维PGNMF算法的压缩率高于一维PGNMF算法,BPGNMF算法所需的运行时间最长,(2D)2PGNMF算法的运行时间最短。该文方法在不影响运算效率的同时能获得较好的识别结果。 展开更多
关键词 逆合成孔径雷达 分块双向二维投影梯度非负矩阵分解 目标识别
在线阅读 下载PDF
基于投影梯度及下逼近方法的非负矩阵分解 被引量:3
8
作者 叶军 《计算机工程》 CAS CSCD 2012年第3期200-202,共3页
在非负矩阵分解算法中,为提升基矩阵的稀疏表达能力,在不事先设定稀疏度的情形下,提出一种基于投影梯度及下逼近方法的非负矩阵分解算法——PGNMU。通过引入上界的约束条件,利用基于投影梯度的交替迭代方法提取基矩阵的重要特征并加以... 在非负矩阵分解算法中,为提升基矩阵的稀疏表达能力,在不事先设定稀疏度的情形下,提出一种基于投影梯度及下逼近方法的非负矩阵分解算法——PGNMU。通过引入上界的约束条件,利用基于投影梯度的交替迭代方法提取基矩阵的重要特征并加以应用。在人脸数据库CBCL和ORL上的实验结果表明,该方法能改进基矩阵的稀疏描述能力,且其识别率也优于已有方法。 展开更多
关键词 非负矩阵分解 投影梯度 下逼近 松弛法 稀疏度 基矩阵
在线阅读 下载PDF
组合2DFLDA监督的非负矩阵分解和独立分量分析的特征提取方法 被引量:3
9
作者 高涛 《计算机应用研究》 CSCD 北大核心 2012年第4期1588-1590,1594,共4页
通过对投影非负矩阵分解(NMF)和二维Fisher线性判别的分析,针对NMF的特征提取存在无监督学习以及特征维数高的问题,提出了组合2DFLDA监督的非负矩阵分解和独立分量分析(SPGNMFICA)的特征提取方法。首先对样本进行投影梯度的非负矩阵分解... 通过对投影非负矩阵分解(NMF)和二维Fisher线性判别的分析,针对NMF的特征提取存在无监督学习以及特征维数高的问题,提出了组合2DFLDA监督的非负矩阵分解和独立分量分析(SPGNMFICA)的特征提取方法。首先对样本进行投影梯度的非负矩阵分解,将得到的NMF子图像进行二维Fisher线性判别,主要反映类间差异信息构建子空间;对子空间的向量进行独立分量分析(ICA),得到独立分量特征空间;其次将样本在独立分量特征空间上进行投影;最后使用径向基网络对投影系数进行识别。通用人脸库ORL和YALE的识别实验证明,该算法是一种有效的特征提取和识别方法。 展开更多
关键词 人脸识别 梯度非负矩阵分解 径向基网络
在线阅读 下载PDF
基于Huber损失的非负矩阵分解算法 被引量:4
10
作者 王丽星 曹付元 《计算机科学》 CSCD 北大核心 2020年第11期80-87,共8页
非负矩阵分解(Nonnegative Matrix Factorization)算法能为原始数据找到非负的、线性的矩阵表示且保留了数据的本质特征,已被成功应用于多个领域。经典的NMF算法及其变体算法大部分使用均方误差函数来度量重建误差,在许多任务中已经显... 非负矩阵分解(Nonnegative Matrix Factorization)算法能为原始数据找到非负的、线性的矩阵表示且保留了数据的本质特征,已被成功应用于多个领域。经典的NMF算法及其变体算法大部分使用均方误差函数来度量重建误差,在许多任务中已经显示出其有效性,但它在处理含有噪声的数据时仍然面临一些困难。Huber损失函数对较小的残差执行的惩罚与均方误差损失函数相同,对较大的残差执行的惩罚是线性增长的,因此与均方误差损失函数相比,Huber损失函数具有更强的鲁棒性;已有研究证明L_(2,1)范数稀疏正则项在机器学习的分类和聚类模型中具有特征选择作用。结合两者的优点,文中提出了一种基于Huber损失函数且融入L_(2,1)范数正则项的非负矩阵分解聚类模型,并给出了基于投影梯度更新规则的优化过程。在多组数据集上将所提算法与经典的多种聚类算法进行对比,实验结果验证了所提算法的有效性。 展开更多
关键词 非负矩阵分解 Huber损失函数 L2 1范数 投影梯度法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部