Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsi...Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly.展开更多
针对FasterVit网络存在的注意力机制失衡、池化策略缺陷导致部分重要特征无法保留和损失函数不能全面考虑所有类别的信息导致学习到的特征比较分散等问题,提出了一种基于CFasterVit-三并联分支融合注意力机制(triple-parallel fusion at...针对FasterVit网络存在的注意力机制失衡、池化策略缺陷导致部分重要特征无法保留和损失函数不能全面考虑所有类别的信息导致学习到的特征比较分散等问题,提出了一种基于CFasterVit-三并联分支融合注意力机制(triple-parallel fusion attention model,TFAM)与余弦均匀流形逼近与投影(cosineuniform manifold approximation and projection,COS-UMAP)模型的滚动轴承故障诊断方法。该模型由FasterVit-TFAM网络、COS-UMAP降维算法和激活函数类距均值标准差损失函数(class-distance mean standard deviation loss,CMSD)-Softmax组成。首先,提出了一种新的注意力机制TFAM,并与FasterVit网络结合,提升了FasterVit网络信息关注的均衡性和表征能力;其次,将基于COS-UMAP降维算法取代FasterVit网络全连接层前最后一次池化操作,有效筛选并保留多维数据中的重要特征;最后,将类距均值标准差损失函数替换Softmax激活函数中的交叉熵损失函数,更全面地学习特征并提高模型的泛化性。西安交通大学滚动轴承数据集滚动轴承故障试验结果表明,TFAM注意力机制和其他注意力机制相比诊断准确率最大提升8.0%,COS-UMAP对比其他降维算法诊断准确率最大提升15.8%,CMSD对比交叉熵损失函数诊断准确率提升0.5%,所提模型对故障样本的识别准确率达到了99.6%,相比FasterVit提升了1.4%,相较于其他网络模型最大提升7.8%;东南大学滚动轴承数据集仿真验证试验结果表明,所提模型对故障样本识别率达98.6%,相比FasterVit提升了2.2%,平均每轮训练时间缩短了16.92 s,对比其他网络模型最大提升12.2%,有效提高了滚动轴承故障诊断模型的准确率和泛化性能。展开更多
基金supported by the National Natural Science Foundation of China(6177202062202433+4 种基金621723716227242262036010)the Natural Science Foundation of Henan Province(22100002)the Postdoctoral Research Grant in Henan Province(202103111)。
文摘Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly.
文摘针对FasterVit网络存在的注意力机制失衡、池化策略缺陷导致部分重要特征无法保留和损失函数不能全面考虑所有类别的信息导致学习到的特征比较分散等问题,提出了一种基于CFasterVit-三并联分支融合注意力机制(triple-parallel fusion attention model,TFAM)与余弦均匀流形逼近与投影(cosineuniform manifold approximation and projection,COS-UMAP)模型的滚动轴承故障诊断方法。该模型由FasterVit-TFAM网络、COS-UMAP降维算法和激活函数类距均值标准差损失函数(class-distance mean standard deviation loss,CMSD)-Softmax组成。首先,提出了一种新的注意力机制TFAM,并与FasterVit网络结合,提升了FasterVit网络信息关注的均衡性和表征能力;其次,将基于COS-UMAP降维算法取代FasterVit网络全连接层前最后一次池化操作,有效筛选并保留多维数据中的重要特征;最后,将类距均值标准差损失函数替换Softmax激活函数中的交叉熵损失函数,更全面地学习特征并提高模型的泛化性。西安交通大学滚动轴承数据集滚动轴承故障试验结果表明,TFAM注意力机制和其他注意力机制相比诊断准确率最大提升8.0%,COS-UMAP对比其他降维算法诊断准确率最大提升15.8%,CMSD对比交叉熵损失函数诊断准确率提升0.5%,所提模型对故障样本的识别准确率达到了99.6%,相比FasterVit提升了1.4%,相较于其他网络模型最大提升7.8%;东南大学滚动轴承数据集仿真验证试验结果表明,所提模型对故障样本识别率达98.6%,相比FasterVit提升了2.2%,平均每轮训练时间缩短了16.92 s,对比其他网络模型最大提升12.2%,有效提高了滚动轴承故障诊断模型的准确率和泛化性能。