期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于一维卷积子域适应对抗网络的变负荷轴承故障诊断
1
作者 张敏 宋执环 杨春节 《控制工程》 CSCD 北大核心 2024年第10期1899-1904,共6页
在大型旋转机械滚动轴承故障诊断的建模中,由于设备运行负载不同,若训练数据与测试数据具有分布差异,则会使训练得到的深度神经网络诊断模型的准确率下降。针对此问题,基于迁移学习理论,提出了基于一维卷积子域适应对抗网络的故障诊断... 在大型旋转机械滚动轴承故障诊断的建模中,由于设备运行负载不同,若训练数据与测试数据具有分布差异,则会使训练得到的深度神经网络诊断模型的准确率下降。针对此问题,基于迁移学习理论,提出了基于一维卷积子域适应对抗网络的故障诊断方法。该方法嵌入了融合样本级权重的局部最大均值差异来促进子域对齐,并引入域判别器与特征提取器进行对抗训练,辅助提取域共性特征。建立了一种有效的跨负载轴承故障诊断模型,实现了目标域的无监督故障诊断,提高了滚动轴承故障诊断的准确性。最后,在凯斯西储大学发布的轴承故障数据集上进行实验,实验结果验证了所提方法的有效性。 展开更多
关键词 迁移学习 滚动轴承故障诊断 局部最大均值差异 样本级权重
在线阅读 下载PDF
一种基于局部加权均值的领域适应学习框架 被引量:10
2
作者 皋军 黄丽莉 孙长银 《自动化学报》 EI CSCD 北大核心 2013年第7期1037-1052,共16页
最大均值差异(Maximum mean discrepancy,MMD)作为一种能有效度量源域和目标域分布差异的标准已被成功运用.然而,MMD作为一种全局度量方法一定程度上反映的是区域之间全局分布和全局结构上的差异.为此,本文通过引入局部加权均值的方法... 最大均值差异(Maximum mean discrepancy,MMD)作为一种能有效度量源域和目标域分布差异的标准已被成功运用.然而,MMD作为一种全局度量方法一定程度上反映的是区域之间全局分布和全局结构上的差异.为此,本文通过引入局部加权均值的方法和理论到MMD中,提出一种具有局部保持能力的投影最大局部加权均值差异(Projected maximum local weighted mean discrepancy,PMLWD)度量,结合传统的学习理论提出基于局部加权均值的领域适应学习框架(Local weighted mean based domain adaptation learning framework,LDAF),在LDAF框架下,衍生出两种领域适应学习方法:LDAF MLC和LDAF SVM.最后,通过测试人工数据集、高维文本数据集和人脸数据集来表明LDAF比其他领域适应学习方法更具优势. 展开更多
关键词 迁移学习 领域适应学习 局部加权均值 投影最大局部加权均值差异 基于局部加权均值的领域适应学习框架
在线阅读 下载PDF
最大局部加权均值差异嵌入 被引量:4
3
作者 皋军 黄丽莉 《电子学报》 EI CAS CSCD 北大核心 2013年第8期1462-1468,共7页
最大均值差异嵌入(Maximum Mean Discrepancy Embedding,MMDE)作为一种基于最大均值差异(MaximumMean Discrepancy,MMD)度量的特征提取方法被成功地运用.然而通过分析得知,该方法在处理原始输入空间上的特征提取问题时一定程度上缺乏适... 最大均值差异嵌入(Maximum Mean Discrepancy Embedding,MMDE)作为一种基于最大均值差异(MaximumMean Discrepancy,MMD)度量的特征提取方法被成功地运用.然而通过分析得知,该方法在处理原始输入空间上的特征提取问题时一定程度上缺乏适应性.因此本文在MMD准则的基础上,并结合已经被广泛研究和探讨的局部学习方法,提出一个新的评价度量:最大局部加权均值差异(Maximum LocalWeightedMean Discrepancy,MLMD),该度量反映源域和目标域分布差异时能充分考虑两个区域内在的局部结构,同时还能通过局部分布差异去反映全局分布差异.本文还在此度量的基础上提出一种能实现迁移学习任务并具有一定局部学习能力的特征提取方法:最大局部加权均值差异嵌入(Maximum Local WeightedMean Discrepancy Embedding,MWME).该方法不但能完成传统意义上的特征提取,同时还能完成在两个分布存在差异但相关的两个区域上实现领域适应学习,从而表明该特征提取方法具有较好的鲁棒性和适应性.实验证明MLMD准则和MWME方法具有上述优势. 展开更多
关键词 最大均值差异嵌入 最大局部均值差异 最大局部加权均值差异嵌入 特征提取 迁移学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部