Objective This study aims to analyze metabolites in the cerebrospinal fluid(CSF)of neurosyphilis patients to identify potential diagnostic markers.Methods Untargeted metabolomics by liquid chromatography-mass spectrom...Objective This study aims to analyze metabolites in the cerebrospinal fluid(CSF)of neurosyphilis patients to identify potential diagnostic markers.Methods Untargeted metabolomics by liquid chromatography-mass spectrometry was used to analyze metabolites in CSF samples from five neurosyphilis and five syphilis/non-neurosyphilis patients.After quality control and normalization,data analyses(principal component analysis,orthogonal partial least squares-discriminant analysis,hierarchical clustering)were conducted to identify differential metabolites.Results The content of metabolites(Pro-leu,nudifloramide,N-oleoyl glycine,DMP 777,(±)-propionylcarnitine,and 3β-hydroxy-5-cholenoic acid)in neurosyphilis patients was 1.7-to 4.5-fold of that in the non-neurosyphilis patients.Conclusions The metabolites,particularly nudifloramide and N-oleoyl glycine,which have been implicated in other neurological disorders,warrant further investigation into their roles in the pathogenesis of neurosyphilis.展开更多
Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order t...Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
A smart response fluid was designed and developed to overcome the challenges of gas channeling during CO_(2)flooding in low-permeability,tight oil reservoirs.The fluid is based on Gemini surfactant with self-assembly ...A smart response fluid was designed and developed to overcome the challenges of gas channeling during CO_(2)flooding in low-permeability,tight oil reservoirs.The fluid is based on Gemini surfactant with self-assembly capabilities,and the tertiary amine group serves as the response component.The responsive characteristics and corresponding mechanism of the smart fluid during the interaction with CO_(2)/oil were studied,followed by the shear characteristics of the thickened aggregates obtained by the smart fluid responding to CO_(2).The temperature and salt resistance of the smart fluid and the aggregates were evaluated,and their feasibility and effectiveness in sweep-controlling during the CO_(2)flooding were confirmed.This research reveals:(1)Thickened aggregates could be assembled since the smart fluid interacted with CO_(2).When the mass fraction of the smart fluid ranged from 0.05%to 2.50%,the thickening ratio changed from 9 to 246,with viscosity reaching 13 to 3100 mPas.As a result,the sweep efficiency in low-permeability core models could be increased in our experiments.(2)When the smart fluid(0.5%to 1.0%)was exposed to simulated oil,the oil/fluid interfacial tension decreased to the level of 1×10^(-2)mN/m.Furthermore,the vesicle-like micelles in the smart fluid completely transformed into spherical micelles when the fluid was exposed to simulated oil with the saturation greater than 10%.As a result,the smart fluid could maintain low oil/fluid interfacial tension,and would not be thickened after oil exposure.(3)When the smart fluid interacted with CO_(2),the aggregates showed self-healing properties in terms of shear-thinning,static-thickening,and structural integrity after several shear-static cycles.Therefore,this fluid is safe to be placed in deep reservoirs.(4)The long-term temperature and salt resistance of the smart fluid and thickened aggregates have been confirmed.展开更多
To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase...To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase separation of SMG dispersion migrating in pores was simulated by using the microfluidic technology. Theoretically guided by the tree fork concentration distribution of red cells in biological fluid mechanics, the concentration distribution mathematical model of SMG in different pores is established. Furthermore, the micro and macro physical simulation experiments of continuous and dispersed phase flooding agents were carried out. The results show that the continuous flooding agent enters all the swept zones and increases the flow resistance in both larger and small pores. On the contrary, the particle phase separation phenomenon occurs during the injection process of dispersed flooding agent. The SMG particles gather in the larger pore to form bridge blinding, and the carrier fluid displace oil in the small pore. Working in cooperation, the SMG particle and carrier fluid drive the residual oil in the low permeability layers step by step and achieve the goal of enhanced oil recovery. The laboratory experimental results indicate that, the oil increment and water reduction effect of dispersed flooding agent is much better than that of continuous flooding agent, which is consistent with the field test results.展开更多
The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristic...The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristics and displacement mechanisms are still unclear,which restricts its further popularization and application.Aiming at this problem,this paper firstly analyzes the production performance of the pilot test and proposed four response types according to the change of water cut curves,including W-type,U-type,V-type response,and no response.Furthermore,the underlying reasons of these four types are analyzed from the aspects of seepage resistance and sweep efficiency.The overall sweep efficiency of gradual-rising W-type,gradual-decreasing W-type,and early V-type response increases from 0.81 to 0.93,0.55 to 0.89,and 0.94 to 1,respectively.And the sum of seepage resistance along the connection line between production well and injection well for U-type and delayed V-type response increases from 0.0994 to 0.2425,and 0.0677 to 0.1654,respectively.Then,the remaining oil distribution after polymer flooding is summarized into four types on the basis of production and geological characteristics,namely disconnected remaining oil,streamline unswept remaining oil,rhythm remaining oil,and interlayer-controlled remaining oil.Furthermore,the main displacement mechanisms for each type are clarified based on the dimensionless seepage resistance and water absorption profile.Generally,improving connectivity by well pattern infilling is the most important for producing disconnected remaining oil.The synergistic effect of well pattern infilling and polymer-surfactant-PPG flooding increases the dimensionless seepage resistance of water channeling regions and forces the subsequent injected water to turn to regions with streamline unswept remaining oil.The improvement of the water absorption profile by polymer-surfactant-PPG flooding and separated layer water injection contributes to displacing rhythm remaining oil and interlayer-controlled remaining oil.Finally,the paper analyzes the relationships between the remaining oil distribution after polymer flooding and production characteristics of infilling polymer-surfactant-PPG flooding.The study helps to deepen the understanding of infilling polymer-surfactant-PPG flooding and has reference significance for more commercial implementations in the future.展开更多
The numerical modeling of oil displacement by nanofluid based on three-dimensional micromodel of cores with different permeability was carried out by the volume of fluid(VOF)method with experimentally measured values ...The numerical modeling of oil displacement by nanofluid based on three-dimensional micromodel of cores with different permeability was carried out by the volume of fluid(VOF)method with experimentally measured values of interfacial tension,contact angle and viscosity.Water-based suspensions of SiO_(2) nanoparticles with a concentration of 0–1%and different particle sizes were considered to study the effect of concentration and size of nanoparticles,displacement fluid flow rate,oil viscosity and core permeability on the efficiency of oil displacement by nanofluid.The oil recovery factor(ORF)increases with the increase of mass fraction of nanoparticles.An increase in nanoparticles’concentration to 0.5% allows an increase in ORF by about 19% compared to water flooding.The ORF increases with the decrease of nanoparticle size,and declines with the increase of displacing rate.It has been shown that the use of nanosuspensions for enhanced oil recovery is most effective for low-permeable reservoirs with highly viscous oil in injection modes with capillary number close to the immobilization threshold,and the magnitude of oil recovery enhancement decreases with the increase of displacement speed.The higher the oil viscosity,the lower the reservoir rock permeability,the higher the ORF improved by nanofluids will be.展开更多
文摘Objective This study aims to analyze metabolites in the cerebrospinal fluid(CSF)of neurosyphilis patients to identify potential diagnostic markers.Methods Untargeted metabolomics by liquid chromatography-mass spectrometry was used to analyze metabolites in CSF samples from five neurosyphilis and five syphilis/non-neurosyphilis patients.After quality control and normalization,data analyses(principal component analysis,orthogonal partial least squares-discriminant analysis,hierarchical clustering)were conducted to identify differential metabolites.Results The content of metabolites(Pro-leu,nudifloramide,N-oleoyl glycine,DMP 777,(±)-propionylcarnitine,and 3β-hydroxy-5-cholenoic acid)in neurosyphilis patients was 1.7-to 4.5-fold of that in the non-neurosyphilis patients.Conclusions The metabolites,particularly nudifloramide and N-oleoyl glycine,which have been implicated in other neurological disorders,warrant further investigation into their roles in the pathogenesis of neurosyphilis.
基金Financial support for this work from National Sciencetechnology Support Plan Projects (No. 2012BAC26B00)the Science Foundation of China University of Petroleum, Beijing (No.2462012KYJJ23)
文摘Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金Supported by the PetroChina Science and Technology Major Project(2019-E2607)PetroChina Exploration and Production Company Science and Technology Project(KS2020-01-09).
文摘A smart response fluid was designed and developed to overcome the challenges of gas channeling during CO_(2)flooding in low-permeability,tight oil reservoirs.The fluid is based on Gemini surfactant with self-assembly capabilities,and the tertiary amine group serves as the response component.The responsive characteristics and corresponding mechanism of the smart fluid during the interaction with CO_(2)/oil were studied,followed by the shear characteristics of the thickened aggregates obtained by the smart fluid responding to CO_(2).The temperature and salt resistance of the smart fluid and the aggregates were evaluated,and their feasibility and effectiveness in sweep-controlling during the CO_(2)flooding were confirmed.This research reveals:(1)Thickened aggregates could be assembled since the smart fluid interacted with CO_(2).When the mass fraction of the smart fluid ranged from 0.05%to 2.50%,the thickening ratio changed from 9 to 246,with viscosity reaching 13 to 3100 mPas.As a result,the sweep efficiency in low-permeability core models could be increased in our experiments.(2)When the smart fluid(0.5%to 1.0%)was exposed to simulated oil,the oil/fluid interfacial tension decreased to the level of 1×10^(-2)mN/m.Furthermore,the vesicle-like micelles in the smart fluid completely transformed into spherical micelles when the fluid was exposed to simulated oil with the saturation greater than 10%.As a result,the smart fluid could maintain low oil/fluid interfacial tension,and would not be thickened after oil exposure.(3)When the smart fluid interacted with CO_(2),the aggregates showed self-healing properties in terms of shear-thinning,static-thickening,and structural integrity after several shear-static cycles.Therefore,this fluid is safe to be placed in deep reservoirs.(4)The long-term temperature and salt resistance of the smart fluid and thickened aggregates have been confirmed.
基金Supported by the China Postdoctoral Science Foundation(Grant No.2018M641610)China National Science and Technology Major Project(2016ZX05025-003)
文摘To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase separation of SMG dispersion migrating in pores was simulated by using the microfluidic technology. Theoretically guided by the tree fork concentration distribution of red cells in biological fluid mechanics, the concentration distribution mathematical model of SMG in different pores is established. Furthermore, the micro and macro physical simulation experiments of continuous and dispersed phase flooding agents were carried out. The results show that the continuous flooding agent enters all the swept zones and increases the flow resistance in both larger and small pores. On the contrary, the particle phase separation phenomenon occurs during the injection process of dispersed flooding agent. The SMG particles gather in the larger pore to form bridge blinding, and the carrier fluid displace oil in the small pore. Working in cooperation, the SMG particle and carrier fluid drive the residual oil in the low permeability layers step by step and achieve the goal of enhanced oil recovery. The laboratory experimental results indicate that, the oil increment and water reduction effect of dispersed flooding agent is much better than that of continuous flooding agent, which is consistent with the field test results.
基金The authors greatly appreciate the financial support of the National Natural Science Foundation of China(Grant No.52104027)the Project supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U21B2070)the Shandong Provincial Natural Science Foundation(Grant No.ZR2021ME072).
文摘The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristics and displacement mechanisms are still unclear,which restricts its further popularization and application.Aiming at this problem,this paper firstly analyzes the production performance of the pilot test and proposed four response types according to the change of water cut curves,including W-type,U-type,V-type response,and no response.Furthermore,the underlying reasons of these four types are analyzed from the aspects of seepage resistance and sweep efficiency.The overall sweep efficiency of gradual-rising W-type,gradual-decreasing W-type,and early V-type response increases from 0.81 to 0.93,0.55 to 0.89,and 0.94 to 1,respectively.And the sum of seepage resistance along the connection line between production well and injection well for U-type and delayed V-type response increases from 0.0994 to 0.2425,and 0.0677 to 0.1654,respectively.Then,the remaining oil distribution after polymer flooding is summarized into four types on the basis of production and geological characteristics,namely disconnected remaining oil,streamline unswept remaining oil,rhythm remaining oil,and interlayer-controlled remaining oil.Furthermore,the main displacement mechanisms for each type are clarified based on the dimensionless seepage resistance and water absorption profile.Generally,improving connectivity by well pattern infilling is the most important for producing disconnected remaining oil.The synergistic effect of well pattern infilling and polymer-surfactant-PPG flooding increases the dimensionless seepage resistance of water channeling regions and forces the subsequent injected water to turn to regions with streamline unswept remaining oil.The improvement of the water absorption profile by polymer-surfactant-PPG flooding and separated layer water injection contributes to displacing rhythm remaining oil and interlayer-controlled remaining oil.Finally,the paper analyzes the relationships between the remaining oil distribution after polymer flooding and production characteristics of infilling polymer-surfactant-PPG flooding.The study helps to deepen the understanding of infilling polymer-surfactant-PPG flooding and has reference significance for more commercial implementations in the future.
文摘The numerical modeling of oil displacement by nanofluid based on three-dimensional micromodel of cores with different permeability was carried out by the volume of fluid(VOF)method with experimentally measured values of interfacial tension,contact angle and viscosity.Water-based suspensions of SiO_(2) nanoparticles with a concentration of 0–1%and different particle sizes were considered to study the effect of concentration and size of nanoparticles,displacement fluid flow rate,oil viscosity and core permeability on the efficiency of oil displacement by nanofluid.The oil recovery factor(ORF)increases with the increase of mass fraction of nanoparticles.An increase in nanoparticles’concentration to 0.5% allows an increase in ORF by about 19% compared to water flooding.The ORF increases with the decrease of nanoparticle size,and declines with the increase of displacing rate.It has been shown that the use of nanosuspensions for enhanced oil recovery is most effective for low-permeable reservoirs with highly viscous oil in injection modes with capillary number close to the immobilization threshold,and the magnitude of oil recovery enhancement decreases with the increase of displacement speed.The higher the oil viscosity,the lower the reservoir rock permeability,the higher the ORF improved by nanofluids will be.