期刊文献+
共找到2,110篇文章
< 1 2 106 >
每页显示 20 50 100
Reinforcement learning based adaptive control for uncertain mechanical systems with asymptotic tracking 被引量:1
1
作者 Xiang-long Liang Zhi-kai Yao +1 位作者 Yao-wen Ge Jian-yong Yao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期19-28,共10页
This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a larg... This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach. 展开更多
关键词 adaptive control Reinforcement learning Uncertain mechanical systems Asymptotic tracking
在线阅读 下载PDF
Tomato detection method using domain adaptive learning for dense planting environments 被引量:1
2
作者 LI Yang HOU Wenhui +4 位作者 YANG Huihuang RAO Yuan WANG Tan JIN Xiu ZHU Jun 《农业工程学报》 EI CAS CSCD 北大核心 2024年第13期134-145,共12页
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ... This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits. 展开更多
关键词 PLANTS MODELS domain adaptive tomato detection illumination variation semi-supervised learning dense planting environments
在线阅读 下载PDF
RVFLN-based online adaptive semi-supervised learning algorithm with application to product quality estimation of industrial processes 被引量:5
3
作者 DAI Wei HU Jin-cheng +2 位作者 CHENG Yu-hu WANG Xue-song CHAI Tian-you 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3338-3350,共13页
Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learnin... Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learning(SSL)method to establish the soft sensor model of product quality.Considering the slow time-varying characteristic of industrial processes,the model parameters should be updated smoothly.According to this characteristic,this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network(RVFLN),denoted as OAS-RVFLN.By introducing a L2-fusion term that can be seen a weight deviation constraint,the proposed algorithm unifies the offline and online learning,and achieves smoothness of model parameter update.Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy.Finally,the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product,which further verifies its effectiveness and potential of industrial application. 展开更多
关键词 semi-supervised learning(SSL) L2-fusion term online adaptation random vector functional link network(RVFLN)
在线阅读 下载PDF
Adaptive learning with guaranteed stability for discrete-time recurrent neural networks 被引量:1
4
作者 邓华 吴义虎 段吉安 《Journal of Central South University of Technology》 EI 2007年第5期685-689,共5页
To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real tim... To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real time recurrent learning, the weights of the recurrent neural networks were updated online in terms of Lyapunov stability theory in the proposed learning algorithm, so the learning stability was guaranteed. With the inversion of the activation function of the recurrent neural networks, the proposed learning algorithm can be easily implemented for solving varying nonlinear adaptive learning problems and fast convergence of the adaptive learning process can be achieved. Simulation experiments in pattern recognition show that only 5 iterations are needed for the storage of a 15×15 binary image pattern and only 9 iterations are needed for the perfect realization of an analog vector by an equilibrium state with the proposed learning algorithm. 展开更多
关键词 recurrent neural networks adaptive learning nonlinear discrete-time systems pattern recognition
在线阅读 下载PDF
Adaptive segmentation of digital mammograms through reinforcement learning 被引量:1
5
作者 LIU Xin-yue FANG Xiao-xuan HUANG Lian-qing 《光学精密工程》 EI CAS CSCD 北大核心 2005年第5期575-583,共9页
An approach based on reinfocement learning for the automated segmentation is presented. The approach consists of two modules:segmentation module and learning module. The segmentation module uses the region-growing alg... An approach based on reinfocement learning for the automated segmentation is presented. The approach consists of two modules:segmentation module and learning module. The segmentation module uses the region-growing algorithm combined with the smooth filtering and the morphological filtering to segment mammograms. The learning module uses the segmentation output as the feedback to learn to select the optimal parameter settings of the segmentation algorithm according to the image properties using reinforcement learning techniques. The approach can adapt itself to various kinds of mammograms through training and therefore obviates the tedious and error-prone tuning of parameter settings manually. Quantitative test results show that the approach is accurate for several kinds of mammograms. Compared to previously proposed approaches,the approach is more adaptable to different mammograms. 展开更多
关键词 适应性分割 平滑性 计算机控制系统 程序设计
在线阅读 下载PDF
Enhancing reliability assessment of curved low-stiffness track-viaducts with an adaptive surrogate-based approach emphasizing track dynamic geometric state
6
作者 CHENG Fang LIU Hui YANG Rui 《Journal of Central South University》 CSCD 2024年第11期4262-4275,共14页
Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a si... Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a simulation-based TDGS model is established,and a surrogate-based model,grid search algorithm-particle swarm optimization-genetic algorithm-multi-output least squares support vector regression,is established.Among them,hyperparameter optimization algorithm’s effectiveness is confirmed through test functions.Subsequently,an adaptive surrogate-based probability density evolution method(PDEM)considering random track geometry irregularity(TGI)is developed.Finally,taking curved train-steel spring floating slab track-U beam as case study,the surrogate-based model trained on simulation datasets not only shows accuracy in both time and frequency domains,but also surpasses existing models.Additionally,the adaptive surrogate-based PDEM shows high accuracy and efficiency,outperforming Monte Carlo simulation and simulation-based PDEM.The reliability assessment shows that the TDGS part peak management indexes,left/right vertical dynamic irregularity,right alignment dynamic irregularity,and track twist,have reliability values of 0.9648,0.9918,0.9978,and 0.9901,respectively.The TDGS mean management index,i.e.,track quality index,has reliability value of 0.9950.These findings show that the proposed framework can accurately and efficiently assess the reliability of curved low-stiffness track-viaducts,providing a theoretical basis for the TGI maintenance. 展开更多
关键词 reliability assessment track dynamic geometric state hybrid machine learning algorithm adaptive learning strategy probability density evolution method
在线阅读 下载PDF
视线追踪技术及其在e-Learning系统中的应用 被引量:5
7
作者 张家华 彭超云 张剑平 《远程教育杂志》 CSSCI 2009年第5期74-78,共5页
视线追踪作为视觉心理的一种重要研究方法,正广泛应用于多个领域。将视线追踪技术应用于e-Learning系统中,将提供一种新的研究视角。本文介绍了视线追踪技术及其特点,并通过两个眼动实验案例论述了该技术在e-Learning研究中的应用,以及... 视线追踪作为视觉心理的一种重要研究方法,正广泛应用于多个领域。将视线追踪技术应用于e-Learning系统中,将提供一种新的研究视角。本文介绍了视线追踪技术及其特点,并通过两个眼动实验案例论述了该技术在e-Learning研究中的应用,以及对e-Learning系统设计的启示。最后以AdeLE项目为例,阐述了视线追踪技术在适应性e-Learning系统中的应用及其前景。 展开更多
关键词 视线追踪 E-learning 眼动 适应性 学习支持
在线阅读 下载PDF
基于Q-learning的HTTP自适应流码率控制方法研究 被引量:3
8
作者 熊丽荣 雷静之 金鑫 《通信学报》 EI CSCD 北大核心 2017年第9期18-24,共7页
基于HTTP的自适应流HAS已经成为自适应视频流服务的标准。在HAS客户端网络状态多变的情况下,硬编码形式的码率决策方法灵活性偏低,对用户体验考虑不足。为了优化用户体验质量(Qo E),提出一种基于Q-Learning的码率控制算法,结合HTTP自适... 基于HTTP的自适应流HAS已经成为自适应视频流服务的标准。在HAS客户端网络状态多变的情况下,硬编码形式的码率决策方法灵活性偏低,对用户体验考虑不足。为了优化用户体验质量(Qo E),提出一种基于Q-Learning的码率控制算法,结合HTTP自适应视频流客户端环境进行建模并定义状态转移规则;量化与用户Qo E相关的参数,构建新的回报函数;实验表明引入Q-Learning进行码率调整的自适应算法在码率切换的稳定性方面表现较好。 展开更多
关键词 HTTP自适应流 硬编码 Q学习 码率控制 稳定性
在线阅读 下载PDF
海上无线网状网中基于Q-Learning的自适应路由算法 被引量:2
9
作者 张强 陈晓静 +1 位作者 何荣希 王雨晴 《电讯技术》 北大核心 2020年第8期936-943,共8页
针对海上无线网状网通信环境复杂多变、船舶节点具有特殊移动模型等特点,提出一种基于Q-Learning的自适应路由(Q-Learning Based Adaptive Routing,QLAR)算法。综合考虑海上无线电波传播特性、船舶航程信息以及相应海区气象信息等因素... 针对海上无线网状网通信环境复杂多变、船舶节点具有特殊移动模型等特点,提出一种基于Q-Learning的自适应路由(Q-Learning Based Adaptive Routing,QLAR)算法。综合考虑海上无线电波传播特性、船舶航程信息以及相应海区气象信息等因素的影响,提出链路可靠性、链路稳定性和节点航程相似度等概念,并对链路状态进行评估;然后,根据链路状态评估结果,利用Q-Learning算法寻找源、目的节点间最稳定的路径以传输数据分组;最后,利用OPNET搭建仿真平台对算法进行测试。仿真结果表明,与4种对比算法中性能最优的算法相比,QLAR算法最高可提升分组投递率4.89%,降低平均分组时延17.42%,减少归一化路由开销21.99%。 展开更多
关键词 海上无线网状网 自适应路由 Q-learning 链路可靠性 链路稳定性 航程相似度
在线阅读 下载PDF
倒立摆的Reinforcement Learning模糊自适应控制 被引量:1
10
作者 廉自生 孟巧荣 《太原理工大学学报》 CAS 北大核心 2005年第4期405-408,共4页
根据Lagrange方程建立了单级倒立摆系统的数学模型,利用模糊自适应控制算法设计了倒立摆系统的控制器,并在Matlab的仿真模块中将倒立摆系统的数学模型和控制器结合起来,对倒立摆控制系统进行了仿真研究。结果表明,对于要求实时性较高的... 根据Lagrange方程建立了单级倒立摆系统的数学模型,利用模糊自适应控制算法设计了倒立摆系统的控制器,并在Matlab的仿真模块中将倒立摆系统的数学模型和控制器结合起来,对倒立摆控制系统进行了仿真研究。结果表明,对于要求实时性较高的非线性不稳定系统,用模糊自适应控制算法可以按照控制要求在线调节控制参数,在最短的调整时间内取得良好的控制效果。 展开更多
关键词 单级倒立摆 REINFORCEMENT learning 模糊自适应控制
在线阅读 下载PDF
基于Active Learning的中文分词领域自适应 被引量:7
11
作者 许华婷 张玉洁 +3 位作者 杨晓晖 单华 徐金安 陈钰枫 《中文信息学报》 CSCD 北大核心 2015年第5期55-62,共8页
在新闻领域标注语料上训练的中文分词系统在跨领域时性能会有明显下降。针对目标领域的大规模标注语料难以获取的问题,该文提出Active learning算法与n-gram统计特征相结合的领域自适应方法。该方法通过对目标领域文本与已有标注语料的... 在新闻领域标注语料上训练的中文分词系统在跨领域时性能会有明显下降。针对目标领域的大规模标注语料难以获取的问题,该文提出Active learning算法与n-gram统计特征相结合的领域自适应方法。该方法通过对目标领域文本与已有标注语料的差异进行统计分析,选择含有最多未标记过的语言现象的小规模语料优先进行人工标注,然后再结合大规模文本中的n-gram统计特征训练目标领域的分词系统。该文采用了CRF训练模型,并在100万句的科技文献领域上,验证了所提方法的有效性,评测数据为人工标注的300句科技文献语料。实验结果显示,在科技文献测试语料上,基于Active Learning训练的分词系统在各项评测指标上均有提高。 展开更多
关键词 中文分词 领域自适应 主动学习
在线阅读 下载PDF
Self-adaptive large neighborhood search algorithm for parallel machine scheduling problems 被引量:8
12
作者 Pei Wang Gerhard Reinelt Yuejin Tan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期208-215,共8页
A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely no... A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis. 展开更多
关键词 non-identical parallel machine scheduling problem with multiple time windows (NPMSPMTW) oversubscribed self- adaptive large neighborhood search (SALNS) machine learning.
在线阅读 下载PDF
Fast image super-resolution algorithm based on multi-resolution dictionary learning and sparse representation 被引量:3
13
作者 ZHAO Wei BIAN Xiaofeng +2 位作者 HUANG Fang WANG Jun ABIDI Mongi A. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期471-482,共12页
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif... Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception. 展开更多
关键词 single image super-resolution(SR) sparse representation multi-resolution dictionary learning(MRDL) adaptive patch partition method(APPM)
在线阅读 下载PDF
Multi-channel differencing adaptive noise cancellation with multi-kernel method 被引量:1
14
作者 Wei Gao Jianguo Huang Jing Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期421-430,共10页
Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of n... Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment. 展开更多
关键词 adaptive noise cancellation multi-channel differencing multi-kernel learning array signal processing.
在线阅读 下载PDF
Repetitive Learning Control for Time-varying Robotic Systems: A Hybrid Learning Scheme 被引量:11
15
作者 SUN Ming-Xuan HE Xiong-Xiong CHEN Bing-Yu 《自动化学报》 EI CSCD 北大核心 2007年第11期1189-1195,共7页
重复学习控制为不明确的变化时间的机器的系统追踪的 finite-time-trajectory 被介绍。在时间函数以一个反复的学习方法被学习的地方,一个混合学习计划被给在系统动力学应付经常、变化时间的 unknowns,没有泰勒表示的帮助,当常规微... 重复学习控制为不明确的变化时间的机器的系统追踪的 finite-time-trajectory 被介绍。在时间函数以一个反复的学习方法被学习的地方,一个混合学习计划被给在系统动力学应付经常、变化时间的 unknowns,没有泰勒表示的帮助,当常规微分学习方法为估计经常的被建议时。介绍重复学习控制为在每个周期的开始的起始的重新定位避免要求,是不同的,并且变化时间的 unknowns 不是必要的周期。随混合学习的采纳,靠近环的系统的州的变量的固定被保证,追踪的错误被保证作为重复增加收敛到零,这被显示出。建议计划的有效性通过数字模拟被表明。 展开更多
关键词 重复学习控制 机器人 时序变化系统 混合学习计划
在线阅读 下载PDF
Dual-stage Optimal Iterative Learning Control for Nonlinear Non-affine Discrete-time Systems 被引量:20
16
作者 CHI Rong-Hu HOU Zhong-Sheng 《自动化学报》 EI CSCD 北大核心 2007年第10期1061-1065,共5页
根据沿着重复轴的一种新动态 linearization 技术,双阶段的最佳的反复的学习控制为非线性、非仿射的分离时间的系统被介绍。双阶段显示二个最佳的学习阶段分别地被设计反复地改进控制输入顺序和学习获得。主要特征是控制器设计和集中... 根据沿着重复轴的一种新动态 linearization 技术,双阶段的最佳的反复的学习控制为非线性、非仿射的分离时间的系统被介绍。双阶段显示二个最佳的学习阶段分别地被设计反复地改进控制输入顺序和学习获得。主要特征是控制器设计和集中分析仅仅取决于动态系统的 I/O 数据。换句话说,没有知道系统的任何另外的知识,我们能容易选择控制参数。模拟学习沿着重复轴说明介绍方法的几何集中,在哪个马路的一个例子控制为它的内在的工程重要性是引人注目的交通反复的学习。 展开更多
关键词 非线性系统 离散时间系统 自适应控制 迭代学习控制 匝道交通调节
在线阅读 下载PDF
A New Discrete-time Adaptive ILC for Nonlinear Systems with Time-varying Parametric Uncertainties 被引量:8
17
作者 CHI Rong-Hu SUI Shu-Lin HOU Zhong-Sheng 《自动化学报》 EI CSCD 北大核心 2008年第7期805-808,共4页
用在分离时间轴和反复的学习轴之间的类比,一条新分离时间的适应反复的学习控制(AILC ) 途径被开发与变化时间的参量的无常探讨非线性的系统的一个班。类似于适应控制,新 AILC 能合并一个设计算法,因此,学习获得能沿着学习的轴反复... 用在分离时间轴和反复的学习轴之间的类比,一条新分离时间的适应反复的学习控制(AILC ) 途径被开发与变化时间的参量的无常探讨非线性的系统的一个班。类似于适应控制,新 AILC 能合并一个设计算法,因此,学习获得能沿着学习的轴反复地被调节。当起始的状态是随机的,参考轨道是变化重复的时,新 AILC 能沿着反复的学习轴 asymptotically 在有限时间间隔上完成 pointwise 集中。 展开更多
关键词 自动化技术 智能系统 非线性系统 离散时间系统 不确定性
在线阅读 下载PDF
基于强化学习的非线性输入受限系统最优控制 被引量:1
18
作者 高晓格 韩淑云 《计算机应用与软件》 北大核心 2025年第2期287-291,298,共6页
针对一类输入受限的非线性系统最优跟踪控制问题,提出一种基于强化学习的自适应动态规划的控制策略。通过设计一种合适的性能指标函数解决控制系统输入受限问题;通过设计评价神经网络来估计系统的最优性能指标函数,从而求解控制系统HJB(... 针对一类输入受限的非线性系统最优跟踪控制问题,提出一种基于强化学习的自适应动态规划的控制策略。通过设计一种合适的性能指标函数解决控制系统输入受限问题;通过设计评价神经网络来估计系统的最优性能指标函数,从而求解控制系统HJB(Hamilton-Jacobi-Bellman)方程,获得最优控制输入;利用Lyapunov方法获得评价网络的权重更新率,并证明系统的跟踪误差和评价网络的权重估计误差为最终一致有界(UUB);通过数值仿真实验验证该控制策略的有效性。 展开更多
关键词 非线性系统 输入受限 强化学习 自适应动态规划
在线阅读 下载PDF
自适应学习中大数据技术应用的隐忧与省思 被引量:3
19
作者 刘远碧 杨薛琳 《教育学报》 北大核心 2025年第1期158-168,共11页
大数据技术支撑的自适应学习可谓是教育数字化转型的创新之举,是现代“因材施教”的技术实践。它通过构建学习者模型来规划自适应学习路径、完成个性化学习资源的推送、发挥学习的预测与预警功能,让人不得不折服于技术的无穷魔力。然而... 大数据技术支撑的自适应学习可谓是教育数字化转型的创新之举,是现代“因材施教”的技术实践。它通过构建学习者模型来规划自适应学习路径、完成个性化学习资源的推送、发挥学习的预测与预警功能,让人不得不折服于技术的无穷魔力。然而,智能的教育技术在为学习者提供个性化学习服务的同时,也潜藏着对学习者主体性的僭越、超越性的消解、社会性的阻隔、生成性的限制等问题,使教育偏离价值轨道。省思大数据技术的可为与不可为,更好地呈现“自适应学习”新样态,需要在人机对话的基础之上建立人机秩序与人机协同的自适应学习系统,坚守以学生发展为目的的教育本质,追求对人完整性与内在性的充分展现与获致,从而实现技术赋能教育,让学习者真正享受到大数据技术所带来的“红利”。 展开更多
关键词 自适应学习 大数据技术 伦理隐忧 教育技术
在线阅读 下载PDF
基于差分隐私的自适应联邦学习隐私保护方案 被引量:2
20
作者 赵婵婵 马坤明 +2 位作者 石宝 杨星辰 李燕 《科学技术与工程》 北大核心 2025年第7期2849-2855,共7页
随着对联邦学习的深入研究,发现联邦学习中的隐私保护策略并不能完全保护用户的隐私安全,并且在联邦学习训练过程中存在模型收敛困难的问题。针对以上问题,提出了一种自适应差分隐私机制(adaptive differential privacy, DP-AdaMod)。首... 随着对联邦学习的深入研究,发现联邦学习中的隐私保护策略并不能完全保护用户的隐私安全,并且在联邦学习训练过程中存在模型收敛困难的问题。针对以上问题,提出了一种自适应差分隐私机制(adaptive differential privacy, DP-AdaMod)。首先,利用自适应学习率算法调整模型训练过程,避免模型出现波动和过拟合现象,从而提高模型训练的效率和性能。其次,引入差分隐私技术,通过对模型梯度添加噪声来确保联邦学习的隐私安全。同时,使用Moment Accountant机制进行隐私损失的精确计算,有助于平衡隐私保护性能和精度,从而进一步增强了系统的安全性。最后,通过仿真实验验证所提方案的有效性。结果表明该方案在准确率、隐私预算消耗等方面展现出较优性能。 展开更多
关键词 联邦学习 差分隐私 隐私保护 自适应
在线阅读 下载PDF
上一页 1 2 106 下一页 到第
使用帮助 返回顶部