In order to improve the precision of mining subsidence prediction, a mathematical model using Support Vector Machine (SVM) was established to calculate the displacement factor. The study is based on a comprehensive ...In order to improve the precision of mining subsidence prediction, a mathematical model using Support Vector Machine (SVM) was established to calculate the displacement factor. The study is based on a comprehensive analysis of factors affecting the displacement factor, such as mechanical properties of the cover rock, the ratio of mining depth to seam thickness, dip angle of the coal seam and the thickness of loose layer. Data of 63 typical observation stations were used as a training and testing sample set. A SVM regression model of the displacement factor and the factors affecting it was established with a kernel function, an insensitive loss factor and a properly selected penalty factor. Given an accurate calculation algorithm for testing and analysis, the results show that an SVM regression model can calcu- late displacement factor precisely and reliable precision can be obtained which meets engineering requirements. The experimental results show that the method to calculation of the displacement factor, based on the SVM method, is feasible. The many factors affecting the displacement factor can be consid- ered with this method. The research provides an efficient and accurate approach for the calculation of displacement in mining subsidence orediction.展开更多
The dynamic ground subsidence due to underground mining is a complicated time-dependent and rate- dependent process. Based. on the theory of rock rheology and probability integral method, this study developed the supe...The dynamic ground subsidence due to underground mining is a complicated time-dependent and rate- dependent process. Based. on the theory of rock rheology and probability integral method, this study developed the superposltlOn model for the prediction and analysis of the ground dynamic subsidence in mining area of thick !oose layer. The model consists of two parts (the prediction of overlying bedrock and the prediction of thick loose layer). The overlying bedrock is regarded as visco-elastic beam, of which the dynamic subsidence is predicted by the Kelvin visco-elastic rheological model. The thick loose layer is regarded as random medium, and the ground dynamic subsidence, is predicted by the probability integral model. At last, the two prediction models are vertically stacked in the same coordinate system, and the bedrock dynamic subsidence is regarded as a variable mining thickness input into the prediction model of ground dynamic subsidence. The prediction results obtained were compared w^th actual movement and deformation data from Zhao I and Zhao II mine, central China. The agreement of the prediction results with the. field measurements.show that the superposition model (SM) is more satisfactory and the formulae obtained are more effective than the classical single probability Integral model(SPIM), and thus can be effectively used for predicting the ground dynamic subsidence in mining area of thick loose layer.展开更多
基金the Research and Innovation Program for College and University Graduate Students in Jiangsu Province (No.CX10B_141Z)the National Natural Science Foundation of China (No.41071273) for support of this project
文摘In order to improve the precision of mining subsidence prediction, a mathematical model using Support Vector Machine (SVM) was established to calculate the displacement factor. The study is based on a comprehensive analysis of factors affecting the displacement factor, such as mechanical properties of the cover rock, the ratio of mining depth to seam thickness, dip angle of the coal seam and the thickness of loose layer. Data of 63 typical observation stations were used as a training and testing sample set. A SVM regression model of the displacement factor and the factors affecting it was established with a kernel function, an insensitive loss factor and a properly selected penalty factor. Given an accurate calculation algorithm for testing and analysis, the results show that an SVM regression model can calcu- late displacement factor precisely and reliable precision can be obtained which meets engineering requirements. The experimental results show that the method to calculation of the displacement factor, based on the SVM method, is feasible. The many factors affecting the displacement factor can be consid- ered with this method. The research provides an efficient and accurate approach for the calculation of displacement in mining subsidence orediction.
基金provided by the National Natural Science Foundation of China Youth Found of China (No.41102169)the doctoral foundation of Henan Polytechnic University of China (No. B2014-056)
文摘The dynamic ground subsidence due to underground mining is a complicated time-dependent and rate- dependent process. Based. on the theory of rock rheology and probability integral method, this study developed the superposltlOn model for the prediction and analysis of the ground dynamic subsidence in mining area of thick !oose layer. The model consists of two parts (the prediction of overlying bedrock and the prediction of thick loose layer). The overlying bedrock is regarded as visco-elastic beam, of which the dynamic subsidence is predicted by the Kelvin visco-elastic rheological model. The thick loose layer is regarded as random medium, and the ground dynamic subsidence, is predicted by the probability integral model. At last, the two prediction models are vertically stacked in the same coordinate system, and the bedrock dynamic subsidence is regarded as a variable mining thickness input into the prediction model of ground dynamic subsidence. The prediction results obtained were compared w^th actual movement and deformation data from Zhao I and Zhao II mine, central China. The agreement of the prediction results with the. field measurements.show that the superposition model (SM) is more satisfactory and the formulae obtained are more effective than the classical single probability Integral model(SPIM), and thus can be effectively used for predicting the ground dynamic subsidence in mining area of thick loose layer.