With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ...With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.展开更多
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron...An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.展开更多
考虑到存活目标与新生目标在动态演化特性上的差异性,提出了面向快速多目标跟踪的协同概率假设密度(collaborative probability hypothesis density,CoPHD)滤波框架。该框架利用存活目标的状态信息,将量测动态划分为存活目标量测集与新...考虑到存活目标与新生目标在动态演化特性上的差异性,提出了面向快速多目标跟踪的协同概率假设密度(collaborative probability hypothesis density,CoPHD)滤波框架。该框架利用存活目标的状态信息,将量测动态划分为存活目标量测集与新生目标量测集,在两个量测集分别运用PHD组处理更新基础上建立了处理模块的交互与协同机制,力图在保证跟踪精度的同时提高计算效率。该框架由于采用PHD组处理方式而具有状态自动提取功能。进一步给出了该框架的序贯蒙特卡罗算法实现。仿真结果表明,该算法在计算效率以及状态提取精度上具有明显优势。展开更多
针对复杂环境下单传感器多目标跟踪方法效果不佳的问题,基于FISST(Finite set statistics)跟踪理论提出一种多传感器高斯混合PHD(Probability hypothesis density)多目标跟踪方法.首先,分析了FISST下多传感器PHD的形式化滤波器,在此基...针对复杂环境下单传感器多目标跟踪方法效果不佳的问题,基于FISST(Finite set statistics)跟踪理论提出一种多传感器高斯混合PHD(Probability hypothesis density)多目标跟踪方法.首先,分析了FISST下多传感器PHD的形式化滤波器,在此基础上构建一种反馈式多传感器PHD融合跟踪框架;进一步利用高斯混合技术提出多传感器PHD跟踪方法;最后,通过解决多传感器后验PHD粒子匹配与融合问题提出三种算法.仿真实验表明,与常规高斯混合PHD跟踪算法相比,本文所提算法能够有效提高目标跟踪精度和鲁棒性.展开更多
基金supported by the National Natural Science Foundation of China(61703228)
文摘With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.
基金supported by the National Natural Science Foundation of China (61773142)。
文摘An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.
文摘考虑到存活目标与新生目标在动态演化特性上的差异性,提出了面向快速多目标跟踪的协同概率假设密度(collaborative probability hypothesis density,CoPHD)滤波框架。该框架利用存活目标的状态信息,将量测动态划分为存活目标量测集与新生目标量测集,在两个量测集分别运用PHD组处理更新基础上建立了处理模块的交互与协同机制,力图在保证跟踪精度的同时提高计算效率。该框架由于采用PHD组处理方式而具有状态自动提取功能。进一步给出了该框架的序贯蒙特卡罗算法实现。仿真结果表明,该算法在计算效率以及状态提取精度上具有明显优势。
文摘针对复杂环境下单传感器多目标跟踪方法效果不佳的问题,基于FISST(Finite set statistics)跟踪理论提出一种多传感器高斯混合PHD(Probability hypothesis density)多目标跟踪方法.首先,分析了FISST下多传感器PHD的形式化滤波器,在此基础上构建一种反馈式多传感器PHD融合跟踪框架;进一步利用高斯混合技术提出多传感器PHD跟踪方法;最后,通过解决多传感器后验PHD粒子匹配与融合问题提出三种算法.仿真实验表明,与常规高斯混合PHD跟踪算法相比,本文所提算法能够有效提高目标跟踪精度和鲁棒性.