This paper proposes an infeasible interior-point algorithm with full-Newton step for linear complementarity problem,which is an extension of Roos about linear optimization. The main iteration of the algorithm consists...This paper proposes an infeasible interior-point algorithm with full-Newton step for linear complementarity problem,which is an extension of Roos about linear optimization. The main iteration of the algorithm consists of a feasibility step and several centrality steps. At last,we prove that the algorithm has O(nlog n/ε) polynomial complexity,which coincides with the best known one for the infeasible interior-point algorithm at present.展开更多
In this paper, a corrector-predictor interior-point algorithm is proposed for sym- metric optimization. The algorithm approximates the central path by an ellipse, follows the ellipsoidal approximation of the central-p...In this paper, a corrector-predictor interior-point algorithm is proposed for sym- metric optimization. The algorithm approximates the central path by an ellipse, follows the ellipsoidal approximation of the central-path step by step and generates a sequence of iter- ates in a wide neighborhood of the central-path. Using the machinery of Euclidean Jordan algebra and the commutative class of search directions, the convergence analysis of the algo- rithm is shown and it is proved that the algorithm has the complexity bound O (√τL) for the well-known Nesterov-Todd search direction and O (τL) for the xs and sx search directions.展开更多
We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the s...We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the safeguard based Mehrotra-type algorithm for linear programming, that was proposed by Salahi et al. Then, using the machinery of Euclidean Jordan algebras, we extend the modified algorithm to symmetric cones. Based on the Nesterov-Todd direction, we obtain O(r log ε1) iteration complexity bound of this algorithm, where r is the rank of the Jordan algebras and ε is the required precision. We also present a new variant of Mehrotra-type algorithm using a new adaptive updating scheme of centering parameter and show that this algorithm enjoys the same order of complexity bound as the safeguard algorithm. We illustrate the numerical behaviour of the methods on some small examples.展开更多
基金Supported by the National Natural Science Fund Finances Projects(71071119)
文摘This paper proposes an infeasible interior-point algorithm with full-Newton step for linear complementarity problem,which is an extension of Roos about linear optimization. The main iteration of the algorithm consists of a feasibility step and several centrality steps. At last,we prove that the algorithm has O(nlog n/ε) polynomial complexity,which coincides with the best known one for the infeasible interior-point algorithm at present.
基金Shahrekord University for financial supportpartially supported by the Center of Excellence for Mathematics, University of Shahrekord, Shahrekord, Iran
文摘In this paper, a corrector-predictor interior-point algorithm is proposed for sym- metric optimization. The algorithm approximates the central path by an ellipse, follows the ellipsoidal approximation of the central-path step by step and generates a sequence of iter- ates in a wide neighborhood of the central-path. Using the machinery of Euclidean Jordan algebra and the commutative class of search directions, the convergence analysis of the algo- rithm is shown and it is proved that the algorithm has the complexity bound O (√τL) for the well-known Nesterov-Todd search direction and O (τL) for the xs and sx search directions.
基金Supported by the National Natural Science Foundation of China(11471102,61301229)Supported by the Natural Science Foundation of Henan University of Science and Technology(2014QN039)
文摘We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the safeguard based Mehrotra-type algorithm for linear programming, that was proposed by Salahi et al. Then, using the machinery of Euclidean Jordan algebras, we extend the modified algorithm to symmetric cones. Based on the Nesterov-Todd direction, we obtain O(r log ε1) iteration complexity bound of this algorithm, where r is the rank of the Jordan algebras and ε is the required precision. We also present a new variant of Mehrotra-type algorithm using a new adaptive updating scheme of centering parameter and show that this algorithm enjoys the same order of complexity bound as the safeguard algorithm. We illustrate the numerical behaviour of the methods on some small examples.