期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Surface Pressure Loading Technology of Ship Structures 被引量:2
1
作者 DAI Ze-yu WEI Peng-yu +3 位作者 CHEN Xiao-ping JIANG Ze CHEN Zhe TANG Qin 《船舶力学》 EI CSCD 北大核心 2024年第12期1940-1952,共13页
A hull structure is prone to local deformation and damage due to the pressure load on the surface.How to simulate surface pressure is an important issue in ship structure test.The loading mode of hydraulic actuator co... A hull structure is prone to local deformation and damage due to the pressure load on the surface.How to simulate surface pressure is an important issue in ship structure test.The loading mode of hydraulic actuator combined with high-pressure flexible bladder was proposed,and the numerical model of the loading device based on flexible bladder was established.The design and analysis method of high-pressure flexible bladder based on aramid-fiber reinforced thermoplastic polyurethane was proposed to break through the surface pressure loading technology of ship structures.The surface pressure loading system based on flexible bladder was developed.The ultimate strength verification test of the box girder under the combined action of bending moment and pressure was carried out to systematically verify the feasibility and applicability of the loading system.The results show that the surface pressure loading technology can be used well for applying uniform pressure to ship structures.Compared with the traditional surface loading methods,the improved device can be applied with horizontal constant pressure load,with rapid response and safe process,and the pressure load is always stable with the increase of the bending moment load during the test.The requirement for uniform loading in the comprehensive strength test of large structural models is satisfied and the accuracy of the test results is improved by this system. 展开更多
关键词 surface pressure load loading system ship structure strength test flexible bladder
在线阅读 下载PDF
Crack propagation mechanism of compression-shear rock under static-dynamic loading and seepage water pressure 被引量:12
2
作者 周志华 曹平 叶洲元 《Journal of Central South University》 SCIE EI CAS 2014年第4期1565-1570,共6页
To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor... To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing. 展开更多
关键词 static-dynamic loading seepage pressure stress intensity factor initiation of crack
在线阅读 下载PDF
Analysis of flow response to fluctuation of rotational speed in a radial impeller
3
作者 XIAO Jun ZHAO Yuanyang SHU Yue 《排灌机械工程学报》 EI CSCD 北大核心 2016年第8期693-702,共10页
By discretizing the convection terms with AUSM+-up scheme in the rotating coordinate system,a finite volume analysis code based on multi-block structured grids was developed independently so as to realize the numerica... By discretizing the convection terms with AUSM+-up scheme in the rotating coordinate system,a finite volume analysis code based on multi-block structured grids was developed independently so as to realize the numerical solving of internal flow fields of turbomachineries.Taking an unshrouded radial impeller with the working fluid of water vapour as the research object,the flow response to the fluctuation of rotational speed was calculated.By comparing the surface pressure profiles and velocity contours calculated by the code and commercial software respectively,the accuracy of flow solver was verified.The analysis of flow response data indicates that,as the working condition shifts closer towards the surge boundary,the response of flow parameters such as mass flow and aerodynamic torque will be more nonsynchronous with the fluctuation of rotational speed,and also the influence of density variation on mass flow variation will be smaller.Moreover,the transient variation region of working condition performance will deviate farther away from the steady performance curve as the working condition approaches the surge boundary.Compared to the working conditions with small mass flows,the distribution characteristics of pressure difference load on the blade surface vary little under large mass flow conditions.The reduction of fluctuation amplitude of rotational speed exerts no influence on abating the hysteresis of flow response. 展开更多
关键词 flow response AUSM+-up scheme fluctuation of rotating speed density variation pressure difference load
在线阅读 下载PDF
Coefficient of consolidation by end of arc method
4
作者 Mohsen Abbaspout Reza Porhoseini +1 位作者 Kazem Barkhordari Ahmad Ghorbani 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期332-337,共6页
One of the most important issues in geotechnical engineering is excess pore pressure caused by clay soil loading and consolidation. Regarding uncertainties and complexities, this issue has long been the subject of att... One of the most important issues in geotechnical engineering is excess pore pressure caused by clay soil loading and consolidation. Regarding uncertainties and complexities, this issue has long been the subject of attention of many researchers. In this work, a one-dimensional consolidation apparatus was equipped in a way that pore water pressure and settlement could be continuously read and recorded during consolidation process under static loading. The end of primary consolidation was obtained using water pressure changes helping to present a new method for determining the end of primary consolidation and consolidation coefficient. This method was then compared with two classical theory methods of lg t and t. Using Terzaghi's theory, the way of pore pressure dissipation for lg t, t and the new method was found and compared with experimental results. It is concluded that the new method has better results. 展开更多
关键词 one-dimensional consolidation of soil excess pore pressure end primary consolidation consolidation coefficient static loading
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部