现有的数据中心节能降碳优化方法没有综合考虑碳足迹涉及的能源输入、生产耗能以及废余利用等环节的耦合性,难以实现系统性节能降碳。为此,提出了一种基于深度强化学习的优化算法DeepCCHP(deep combined cooling,heating and power gene...现有的数据中心节能降碳优化方法没有综合考虑碳足迹涉及的能源输入、生产耗能以及废余利用等环节的耦合性,难以实现系统性节能降碳。为此,提出了一种基于深度强化学习的优化算法DeepCCHP(deep combined cooling,heating and power generation),针对数据中心冷热电联产系统,联合控制供电子系统和制冷子系统,优化用电成本、碳排放量和能效。DeepCCHP结合长、短期时间序列网络和深度强化学习方法对联合优化问题进行求解,实现前摄式的联合控制发电设备和制冷设备。在基于Trnsys软件的仿真环境中,通过阿里巴巴数据中心集群数据的训练和验证。实验结果表明,与基准算法相比,DeepCCHP算法可以节省最高40%的成本和28%的碳排放量,且能够在能源成本、碳排放和能效三者之间取得更好的折中与平衡。展开更多
为激励移动式储能系统(mobile energy storage system,MESS)参与电力市场,并在增加自身盈利的同时,在一定程度上缓解电力阻塞,计及转移效用与不确定性,提出一种MESS日前日内两阶段市场竞标策略。首先,在日前阶段,构建MESS参与电力市场...为激励移动式储能系统(mobile energy storage system,MESS)参与电力市场,并在增加自身盈利的同时,在一定程度上缓解电力阻塞,计及转移效用与不确定性,提出一种MESS日前日内两阶段市场竞标策略。首先,在日前阶段,构建MESS参与电力市场双层投标模型,上层旨在决策MESS的时空分布及功率,下层为电力市场出清模型;其次,在日内阶段,采用多场景随机优化方法模拟、分析日内不确定性,并以日前荷电水平和转移计划为参考,基于模型预测控制方法构建MESS参与日内电力市场双层投标模型,上层旨在动态调整MESS实时功率,下层亦为电力市场出清模型;进一步,利用KKT条件和互补松弛理论将双层竞标模型转化为单层线性优化模型,以实现高效求解;最后,以国内某城域互联电力交通网络设计典型仿真案例。仿真结果表明,所提策略能够实现可调配资源的最大化利用,有效缓解电力系统输电阻塞,促进清洁能源消纳。展开更多
文摘现有的数据中心节能降碳优化方法没有综合考虑碳足迹涉及的能源输入、生产耗能以及废余利用等环节的耦合性,难以实现系统性节能降碳。为此,提出了一种基于深度强化学习的优化算法DeepCCHP(deep combined cooling,heating and power generation),针对数据中心冷热电联产系统,联合控制供电子系统和制冷子系统,优化用电成本、碳排放量和能效。DeepCCHP结合长、短期时间序列网络和深度强化学习方法对联合优化问题进行求解,实现前摄式的联合控制发电设备和制冷设备。在基于Trnsys软件的仿真环境中,通过阿里巴巴数据中心集群数据的训练和验证。实验结果表明,与基准算法相比,DeepCCHP算法可以节省最高40%的成本和28%的碳排放量,且能够在能源成本、碳排放和能效三者之间取得更好的折中与平衡。
文摘为激励移动式储能系统(mobile energy storage system,MESS)参与电力市场,并在增加自身盈利的同时,在一定程度上缓解电力阻塞,计及转移效用与不确定性,提出一种MESS日前日内两阶段市场竞标策略。首先,在日前阶段,构建MESS参与电力市场双层投标模型,上层旨在决策MESS的时空分布及功率,下层为电力市场出清模型;其次,在日内阶段,采用多场景随机优化方法模拟、分析日内不确定性,并以日前荷电水平和转移计划为参考,基于模型预测控制方法构建MESS参与日内电力市场双层投标模型,上层旨在动态调整MESS实时功率,下层亦为电力市场出清模型;进一步,利用KKT条件和互补松弛理论将双层竞标模型转化为单层线性优化模型,以实现高效求解;最后,以国内某城域互联电力交通网络设计典型仿真案例。仿真结果表明,所提策略能够实现可调配资源的最大化利用,有效缓解电力系统输电阻塞,促进清洁能源消纳。