BACKGROUND:Intracranial hemorrhage (ICH),a severe complication among adults receiving extracorporeal membrane oxygenation (ECMO),is often related to poor outcomes.This study aimed to establish a predictive model for I...BACKGROUND:Intracranial hemorrhage (ICH),a severe complication among adults receiving extracorporeal membrane oxygenation (ECMO),is often related to poor outcomes.This study aimed to establish a predictive model for ICH in adults receiving ECMO treatment.METHODS:Adults who received ECMO between January 2017 and June 2022 were the subjects of a single-center retrospective study.Patients under the age of 18 years old,with acute ICH before ECMO,with less than 24 h of ECMO support,and with incomplete data were excluded.ICH was diagnosed by a head computed tomography scan.The outcomes included the incidence of ICH,in-hosptial mortality and 28-day mortality.Multivariate logistic regression analysis was used to identify relevant risk factors of ICH,and a predictive model of ICH with a nomogram was constructed.RESULTS:Among the 227 patients included,22 developed ICH during ECMO.Patients with ICH had higher in-hospital mortality (90.9%vs.47.8%,P=0.001) and higher 28-day mortality (81.8%vs.47.3%,P=0.001) than patients with non-ICH.ICH was associated with decreased grey-white-matter ratio (GWR)(OR=0.894,95%CI:0.841–0.951,P<0.001),stroke history (OR=4.265,95%CI:1.052–17.291,P=0.042),fresh frozen plasma (FFP) transfusion (OR=1.208,95%CI:1.037–1.408,P=0.015)and minimum platelet (PLT) count during ECMO support (OR=0.977,95%CI:0.958–0.996,P=0.019).The area under the receiver operating characteristic curve of the ICH predictive model was 0.843 (95%CI:0.762–0.924,P<0.001).CONCLUSION:ECMO-treated patients with ICH had a higher risk of death.GWR,stroke history,FFP transfusion,and the minimum PLT count were independently associated with ICH,and the ICH predictive model showed that these parameters performed well as diagnostic tools.展开更多
Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping...Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping software.Following modern vibration standards and guidelines,the vibration velocity level in a building in each frequency band is expressed as the sum of a force density(source term),line source transfer mobility(propagation term)and building correction factor(receiver term).A hybrid approach is used that allows for a combination of experimental data and numerical predictions,providing increased flexibility and applicability.The train and track properties can be selected from a database or entered as numerical values.The user can select soil impedance and transfer functions from a database,pre-computed for a wide range of parameters with state-of-the-art models.An experimental database of force densities,transfer functions,free field vibration and input parameters is also provided.The building response is estimated by means of building correction factors.Assumptions within the modelling approach are made to reduce computation time but these can influence prediction accuracy;this is quantified for the case of a nominal intercity train running at different speeds on a ballasted track supported by homogeneous soil of varying stiffness.The paper focuses on the influence of these parameters on the compliance of the track–soil system and the free field response.We also demonstrate the use and discuss the validation of the vibration prediction tool for the case of a high-speed train running on a ballasted track in Lincent(Belgium).展开更多
Potential natural vegetation(PNV)is a valuable reference for ecosystem renovation and has garnered increasing attention worldwide.However,there is limited knowledge on the spatio-temporal distributions,transitional pr...Potential natural vegetation(PNV)is a valuable reference for ecosystem renovation and has garnered increasing attention worldwide.However,there is limited knowledge on the spatio-temporal distributions,transitional processes,and underlying mechanisms of global natural vegetation,particularly in the case of ongoing climate warming.In this study,we visualize the spatio-temporal pattern and inter-transition procedure of global PNV,analyse the shifting distances and directions of global PNV under the influence of climatic disturbance,and explore the mechanisms of global PNV in response to temperature and precipitation fluctuations.To achieve this,we utilize meteorological data,mainly temperature and precipitation,from six phases:the Last Inter-Glacial(LIG),the Last Glacial Maximum(LGM),the Mid Holocene(MH),the Present Day(PD),2030(20212040)and 2090(2081–2100),and employ a widely-accepted comprehensive and sequential classification sy–stem(CSCS)for global PNV classification.We find that the spatial patterns of five PNV groups(forest,shrubland,savanna,grassland and tundra)generally align with their respective ecotopes,although their distributions have shifted due to fluctuating temperature and precipitation.Notably,we observe an unexpected transition between tundra and savanna despite their geographical distance.The shifts in distance and direction of five PNV groups are mainly driven by temperature and precipitation,although there is heterogeneity among these shifts for each group.Indeed,the heterogeneity observed among different global PNV groups suggests that they may possess varying capacities to adjust to and withstand the impacts of changing climate.The spatio-temporal distributions,mutual transitions and shift tendencies of global PNV and its underlying mechanism in face of changing climate,as revealed in this study,can significantly contribute to the development of strategies for mitigating warming and promoting re-vegetation in degraded regions worldwide.展开更多
Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction mo...Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction models may fail to properly describe the embrittlement trend curves of Chinese domestic RPV steels with relatively low Cu content.Based on the screened surveillance data of Chinese domestic and similar international RPV steels,we have developed a new fluencedependent model for predicting the irradiation-embrittlement trend.The fast neutron fluence(E>1 MeV)exhibited the highest correlation coefficient with the measured TTS data;thus,it is a crucial parameter in the prediction model.The chemical composition has little relevance to the TTS residual calculated by the fluence-dependent model.The results show that the newly developed model with a simple power-law functional form of the neutron fluence is suitable for predicting the irradiation-embrittlement trend of Chinese domestic RPVs,regardless of the effect of the chemical composition.展开更多
The accurate prediction of photovoltaic(PV)power generation is an important basis for hybrid grid scheduling.With the expansion of the scale of PV power plants and the popularization of distributed PV,this study propo...The accurate prediction of photovoltaic(PV)power generation is an important basis for hybrid grid scheduling.With the expansion of the scale of PV power plants and the popularization of distributed PV,this study proposes a multilayer PV power generation prediction model based on transfer learning to solve the problems of the lack of data on new PV bases and the low accuracy of PV power generation prediction.The proposed model,called DRAM,concatenates a dilated convolutional neural network(DCNN)module with a bidirectional long short-term memory(BiLSTM)module,and integrates an attention mechanism.First,the processed data are input into the DCNN layer,and the dilation convolution mechanism captures the spatial features of the wide sensory field of the input data.Subsequently,the temporal characteristics between the features are extracted in the BiLSTM layer.Finally,an attention mechanism is used to strengthen the key features by assigning weights to efficiently construct the relationship between the features and output variables.In addition,the power prediction accuracy of the new PV sites was improved by transferring the pre-trained model parameters to the new PV site prediction model.In this study,the pre-training of models using data from different source domains and the correlations between these pre-trained models and the target domain were analyzed.展开更多
With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can b...With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can be extended,and the prediction of the depth limit of oil accumulation(DLOA),are issues that have attracted significant attention in petroleum geology.Since it is difficult to characterize the evolution of the physical properties of the marine carbonate reservoir with burial depth,and the deepest drilling still cannot reach the DLOA.Hence,the DLOA cannot be predicted by directly establishing the relationship between the ratio of drilling to the dry layer and the depth.In this study,by establishing the relationships between the porosity and the depth and dry layer ratio of the carbonate reservoir,the relationships between the depth and dry layer ratio were obtained collectively.The depth corresponding to a dry layer ratio of 100%is the DLOA.Based on this,a quantitative prediction model for the DLOA was finally built.The results indicate that the porosity of the carbonate reservoir,Lower Ordovician in Tazhong area of Tarim Basin,tends to decrease with burial depth,and manifests as an overall low porosity reservoir in deep layer.The critical porosity of the DLOA was 1.8%,which is the critical geological condition corresponding to a 100%dry layer ratio encountered in the reservoir.The depth of the DLOA was 9,000 m.This study provides a new method for DLOA prediction that is beneficial for a deeper understanding of oil accumulation,and is of great importance for scientific guidance on deep oil drilling.展开更多
This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknow...This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknown uncertainties,we study the tube-based model predictive control scheme that makes use of feedforward neural network.Based on the characteristics of the bounded limit of the average cost function while time approaching infinity,a min-max optimization problem(referred to as min-max OP)is formulated to design the controller.The feasibility of this optimization problem and the practical stability of the controlled system are ensured.To demonstrate the efficacy of the proposed approach,a numerical simulation on a double-tank system is conducted.The results of the simulation serve as verification of the effectualness of the proposed scheme.展开更多
Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fa...Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy.展开更多
AIM:To investigate the value of optical coherence tomography angiography(OCTA)indicators in the diagnosis of diabetic retinopathy(DR),and to provide patients with diabetic nephropathy(DN)with more sensitive OCTA scree...AIM:To investigate the value of optical coherence tomography angiography(OCTA)indicators in the diagnosis of diabetic retinopathy(DR),and to provide patients with diabetic nephropathy(DN)with more sensitive OCTA screening indicators to detect concurrent DR at an early stage.METHODS:A total of 200 patients who treated in the ophthalmology department of the Seventh Affiliated Hospital,Sun Yat-sen University from 2022 to 2023 were included,including 95 first-diagnosed DR patients and 105 patients without DR,and all patients underwent OCTA examination and a collection of demographics and renal function parameters.After a quality check,automated measurements of the foveal avascular zone area,vessel density(VD),and perfusion density(PD)of both 3 mm×3 mm and 6 mm×6 mm windows were obtained.RESULTS:Using random forest and multivariate Logistic regression methods,we developed a diagnostic model for DR based on 12 variables(age,FBG,SBP,DBP,HbA1c,ALT,ALP,urea/Scr,DM duration,HUA,DN,and CMT).Adding specific OCTA parameters enhanced the efficacy of the existing diagnostic model for DR(outer vessel density in 6 mm×6 mm window,AUC=0.837 vs 0.819,P=0.03).In the study of DN patients,the parameters in the 6 mm×6 mm window improved the diagnostic efficacy of DR(inner VD;outer VD;full VD;outer PD;full PD).CONCLUSION:The outer VD in the 6 mm×6 mm window can enhance the efficacy of the traditional DR diagnostic model.Meanwhile,compared with the 3 mm×3 mm window,the microvascular parameters in the 6 mm×6 mm window focusing on DN patients can be more sensitive to diagnosing the occurrence of DR.展开更多
This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration s...This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration stability in cargo transportation.The LD-ASF is further optimized for payload transportation efficiency by a novel coordinate game theory to balance competing control objectives among payload transport speed,stable end body's libration,and overall control input via model predictive control.The transfer period is divided into several sections to reduce computational burden.The validity and efficacy of the proposed LD-ASF and coordinate game-based model predictive control are demonstrated by computer simulation.Numerical results reveal that the optimized LD-ASF results in higher transportation speed,stable end body's libration,lower thrust fuel consumption,and more flexible optimization space than the classic analytical speed function.展开更多
A multi-constrained model predictive control ( MPC ) algorithm for trajectory tracking of an autonomous ground vehicle is proposed and tested in this paper. First, to simplify the computa- tion, an active steering l...A multi-constrained model predictive control ( MPC ) algorithm for trajectory tracking of an autonomous ground vehicle is proposed and tested in this paper. First, to simplify the computa- tion, an active steering linear error model is applied in the MPC controller. Then, a control incre- ment constraint and a relaxing factor are taken into account in the objective function to ensure the smoothness of the trajectory, using a softening constraints technique. In addition, the controller can obtain optimal control sequences which satisfy both the actual kinematic constraints and the actuator constraints. The circular trajectory tracking performance of the proposed method is compared with that of another MPC controller. To verify the trajectory tracking capabilities of the designed control- ler at different desired speed, the simulation experiments are carried out at the speed of 3m/s, 5m/ s and 10m/s. The results demonstrate the MPC controller has a good speed adaptability.展开更多
BACKGROUND:Swallowing disorder is a common clinical symptom that can lead to a series of complications,including aspiration,aspiration pneumonia,and malnutrition.This study aimed to investigate risk factors of post-ex...BACKGROUND:Swallowing disorder is a common clinical symptom that can lead to a series of complications,including aspiration,aspiration pneumonia,and malnutrition.This study aimed to investigate risk factors of post-extubation dysphagia(PED)in intensive care unit(ICU)patients with endotracheal intubation,and to develop a risk-predictive model for PED,which could serve as an assessment tool for the prevention and control of PED.METHODS:Patients retrospectively selected from June to December 2021 in a tertiary hospital served as the derivation cohort.Patients recruited from the same hospital from March to June 2022served as the external validation cohort for the predictive model.We used a combination of variable screening and least absolute shrinkage and selection operator(LASSO)regression to select the most useful candidate predictors and checked the multicollinearity of independent variables using the variance inflation factor method.Multivariate logistic regression analysis was performed to calculate the odds ratio(OR;95%confidence interval[95%CI])and P-value for each variable to predict diagnosis.The screened risk factors were introduced into R software to build a nomogram model.The performance of the model,including discrimination ability,calibration,and clinical benefit,was evaluated by plotting the receiver operating characteristic(ROC),calibration,and decision curves.RESULTS:A total of 305 patients were included in this study.Among them,235 patients(53PED vs.182 non-PED)were enrolled in the derivation cohort,while 70 patients(17 PED vs.53 nonPED)were enrolled in the validation cohort.The independent predictors included age,pause of sedatives,level of consciousness,activities of daily living(ADL)score,nasogastric tube,sore throat,and voice disorder.These predictors were used to establish the predictive nomogram model.The model demonstrated good discriminative ability,and the area under the ROC curve(AUC)was 0.945(95%CI 0.904-0.970).Applying the predictive model to the validation cohort demonstrated good discrimination with an AUC of 0.907(95%CI 0.831-0.983)and good calibration.The decision-curve analysis of this nomogram showed a net benefit of the model.CONCLUSION:A predictive model that incorporates age,pause of sedatives,level of consciousness,ADL score,nasogastric tube,sore throat,and voice disorder may have the potential to predict PED in ICU patients.展开更多
Background:Attrition rate in new army recruits is higher than in incumbent troops.In the current study,we identified the risk factors for attrition due to injuries and physical fitness failure in recruit training.A va...Background:Attrition rate in new army recruits is higher than in incumbent troops.In the current study,we identified the risk factors for attrition due to injuries and physical fitness failure in recruit training.A variety of predictive models were attempted.Methods:This retrospective cohort included 19,769 Army soldiers of the Australian Defence Force receiving recruit training during a period from 2006 to 2011.Among them,7692 reserve soldiers received a 28-day training course,and the remaining 12,077 full-time soldiers received an 80-day training course.Retrieved data included anthropometric measures,course-specific variables,injury,and physical fitness failure.Multivariate regression was used to develop a variety of models to predict the rate of attrition due to injuries and physical fitness failure.The area under the receiver operating characteristic curve was used to compare the performance of the models.Results:In the overall analysis that included both the 28-day and 80-day courses,the incidence of injury of any type was 27.8%.The 80-day course had a higher rate of injury if calculated per course(34.3%vs.17.6%in the 28-day course),but lower number of injuries per person-year(1.56 vs.2.29).Fitness test failure rate was significantly higher in the 28-day course(30.0%vs.12.1%).The overall attrition rate was 5.2%and 5.0%in the 28-day and 80-day courses,respectively.Stress fracture was common in the 80-day course(n=44)and rare in the 28-day course(n=1).The areas under the receiver operating characteristic curves for the course-specific predictive models were relatively low(ranging from 0.51 to 0.69),consistent with"failed"to"poor"predictive accuracy.The course-combined models performed somewhat better than the course-specific models,with two models having AUC of 0.70 and 0.78,which are considered"fair"predictive accuracy.Conclusion:Attrition rate was similar between 28-day and 80-day courses.In comparison to the 80-day full course,the 28-day course had a lower rate of injury but a higher number of injuries per person-year and of fitness test failure.These findings suggest fitness level at the commencement of training is a critically important factor to consider when designing the course curriculum,particularly short courses.展开更多
Preventing and suppressing forest fires is one of the main tasks of forestry agencies to reduce resource loss and requires a thorough understanding of the importance of factors affecting their occurrence.This study wa...Preventing and suppressing forest fires is one of the main tasks of forestry agencies to reduce resource loss and requires a thorough understanding of the importance of factors affecting their occurrence.This study was carried out in forest plantations on Maoer Mountain in order to develop models for predicting the moisture content of dead fine fuel using meteorological and soil variables.Models by Nelson(Can J For Res 14:597-600,1984)and Van Wagner and Pickett(Can For Service 33,1985)describing the equilibrium moisture content as a function of relative humidity and temperature were evaluated.A random forest and generalized additive models were built to select the most important meteorological variables affecting fuel moisture content.Nelson’s(Can J For Res 14:597-600,1984)model was accurate for Pinus koraiensis,Pinus sylvestris,Larix gmelinii and mixed Larix gmelinii—Ulmus propinqua fuels.The random forest model showed that temperature and relative humidity were the most important factors affecting fuel moisture content.The generalized additive regression model showed that temperature,relative humidity and rain were the main drivers affecting fuel moisture content.In addition to the combined effects of temperature,rainfall and relative humidity,solar radiation or wind speed were also significant on some sites.In P.koraiensis and P.sylvestris plantations,where soil parameters were measured,rain,soil moisture and temperature were the main factors of fuel moisture content.The accuracies of the random forest model and generalized additive model were similar,however,the random forest model was more accurate but underestimated the effect of rain on fuel moisture.展开更多
Objectives The aim of this study was to develop a clinical risk model that is predictive of in-hospital mortality in elderly patients hos- pitalized with acute heart failure (AHF). Methods 2486 patients who were 60 ...Objectives The aim of this study was to develop a clinical risk model that is predictive of in-hospital mortality in elderly patients hos- pitalized with acute heart failure (AHF). Methods 2486 patients who were 60 years and older from intensive care units of Cardiology De- partment in the hospital were analyzed. Independent risk factors for in-hospital mortality were obtained by binary logistic regression and then used to establish the risk prediction score system (RPSS). The area under the curve (AUC) of receiver operator characteristic and C-statistic test were adopted to assess the performance of RPSS and to compare with previous get with the guidelines-heart failure (GWTG-HF). Re- sults By binary logistic regression analysis, heart rate (OR: 1.043, 95% CI: 1.030-1.057, P 〈 0.001), left ventricular ejection fraction (OR: 0.918, 95% CI: 0.833~).966, P 〈 0.001), pH value (OR: 0.001, 95% CI: 0.000-0.002, P 〈 0.001), renal dysfunction (OR: 0.120, 95% CI: 0.066M).220, P 〈 0.001) and NT-pro BNP (OR: 3.463, 95% CI: 1.870-6.413, P 〈 0.001) were independent risk factors of in-hospital mortal- ity for elderly AHF patients. Additionally, RPSS, which was composed of all the above-mentioned parameters, provided a better risk predic- tion than GWTG-THF (AUC: 0.873 vs. 0.818, P = 0.016). Conclusions Our risk prediction model, RPSS, provided a good prediction for in-hospital mortality in elderly patients with A/IF.展开更多
Sandstone is widely distributed in cold regions and the freeze-thaw deterioration of them has caused many geological engineering disasters.As an important and direct index of frost resistance,the strength loss of sand...Sandstone is widely distributed in cold regions and the freeze-thaw deterioration of them has caused many geological engineering disasters.As an important and direct index of frost resistance,the strength loss of sandstones under freeze-thaw actions should be investigated to provide a guidance for the stability assessment of geological engineering.In this research,the UCS(Uniaxial compressive strength)loss of six typical sandstones with different water contents after 0,20,40 and 60 freeze-thaw cycles was measured in the laboratory.The experimental results indicated that the freeze-thaw damage was more serious in sandstones containing high water contents,and the critical saturations for causing a significant loss of UCS under freeze-thaw were 60%-80%for these sandstones.Below this critical saturation,the UCS loss of the sandstones was mainly caused by water weakening rather than freeze-thaw damage.Besides,a developed strength prediction model was proposed by combining the exponential decay function and multiple linear regression method.The initial porosity,elastic modulus and tensile strength of fresh sandstones were a good parameter combination to accurately determine the decay constant in this developed model.The main novelty of this model is that it can accurately and easily estimate the UCS loss of sandstones after any freeze-thaw cycle only using the initial parameters of fresh sandstones,but it does not need to perform freeze-thaw and mechanical strength experiments.This study not only provides an accurate prediction model of UCS under freeze-thaw,but also makes a contribution to better understanding the frost resistance mechanism of sandstones.展开更多
Background Resistance to anti-platelet therapy is detrimental to patients. Our aim was to establish a predictive model for aspirin resistance to identify high-risk patients and to propose appropriate intervention. Met...Background Resistance to anti-platelet therapy is detrimental to patients. Our aim was to establish a predictive model for aspirin resistance to identify high-risk patients and to propose appropriate intervention. Methods Elderly patients (n = 1130) with stable chronic coronary heart disease who were taking aspirin (75 mg) for 〉 2 months were included. Details of their basic characteristics, laboratory test results, and medications were collected. Logistic regression analysis was performed to establish a predictive model for aspirin resistance. Risk score was finally established according to coefficient B and type of variables in logistic regression. The Hosmer-Lemeshow (HL) test and receiver operating characteristic curves were performed to respectively test the calibration and discrimination of the model. Results Seven risk factors were included in our risk score. They were serum creatinine (〉 110 μmol/L, score of 1); fasting blood glucose (〉 7.0 mmol/L, score of 1); hyperlipidemia (score of 1); number of coronary arteries (2 branches, score of 2; 〉 3 branches, score of 4); body mass index (20-25 kg/m2, score of 2; 〉 25 kg/m2, score of 4); percutaneous coronary intervention (score of 2); and smoking (score of 3). The HL test showed P ≥ 0.05 and area under the receiver operating characteristic curve ≥ 0.70. Conclusions We explored and quantified the risk factors for aspirin resistance. Our predictive model showed good calibration and discriminative power and therefore a good foundation for the further study of patients undergoing anti-platelet therapy.展开更多
Studying diurnal variation in the moisture content of fine forest fuel(FFMC)is key to understanding forest fire prevention.This study established models for predicting the diurnal mean,maximum,and minimum FFMC in a bo...Studying diurnal variation in the moisture content of fine forest fuel(FFMC)is key to understanding forest fire prevention.This study established models for predicting the diurnal mean,maximum,and minimum FFMC in a boreal forest in China using the relationship between FFMC and meteorological variables.A spline interpolation function is proposed for describing diurnal variations in FFMC.After 1 day with a 1 h field measurement data testing,the results indicate that the accuracy of the sunny slope model was 100%and 84%when the absolute error was<3%and<10%,respectively,whereas the accuracy of the shady slope model was 72%and 76%when the absolute error was<3%and<10%,respectively.The results show that sunny slope and shady slope models can predict and describe diurnal variations in fine fuel moisture content,and provide a basis for forest fire danger prediction in boreal forest ecosystems in China.展开更多
Based on an analysis of the existing models of CO 2 corrosion in literatures and the autoclave simulative experiments, a predictive model of corrosion rate (r corr) in CO 2/H 2S corrosion for oil tubes has been ...Based on an analysis of the existing models of CO 2 corrosion in literatures and the autoclave simulative experiments, a predictive model of corrosion rate (r corr) in CO 2/H 2S corrosion for oil tubes has been established, in which r corr is expressed as a function of pH, temperature (T), pressure of CO 2 (P CO 2) and pressure of H 2S (P H 2S). The model has been verified by experimental data obtained on N80 steel. The improved features of the predictive model include the following aspects: (1) The influence of temperature on the protectiveness of corrosion film is taken into consideration for establishment of predictive model of the r corr in CO 2/H 2S corrosion. The Equations of scale temperature and scale factor are put forward, and they fit the experimental result very well. (2) The linear relationship still exists between ln r corr and ln P CO 2 in CO 2/H 2S corrosion (as same as that in CO 2 corrosion). Therefore, a correction factor as a function of P H 2S has been introduced into the predictive model in CO 2/H 2S corrosion. (3) The model is compatible with the main existing models.展开更多
Interparticle adhesion force has a controlling effect on the physical and mechanical properties of planetary regolith and rocks.The current research on the adhesion force of planetary regolith and rock particles has b...Interparticle adhesion force has a controlling effect on the physical and mechanical properties of planetary regolith and rocks.The current research on the adhesion force of planetary regolith and rock particles has been primarily based on the assumption of smooth spherical particles to calculate the intergranular adhesion force;this approach lacks consideration for the adhesion force between irregular shaped particles.In our study,an innovative approach was established to directly measure the adhesion force between the arbitrary irregular shaped particles;the probe was modified using simulated lunar soil particles that were a typical representation of planetary regolith.The experimental results showed that for irregular shaped mineral particles,the particle size and mineral composition had no significant influence on the interparticle adhesion force;however,the complex morphology of the contact surface predominantly controlled the adhesion force.As the contact surface roughness increased,the adhesion force gradually decreased,and the rate of decrease gradually slowed;these results were consistent with the change trend predicted via the theoretical models of quantum electrodynamics.Moreover,a theoretical model to predict the adhesion force between the irregular shaped particles was constructed based on Rabinovich’s theory,and the prediction results were correlated with the experimental measurements.展开更多
基金supported by the National Natural Science Foundation of China (82072159)。
文摘BACKGROUND:Intracranial hemorrhage (ICH),a severe complication among adults receiving extracorporeal membrane oxygenation (ECMO),is often related to poor outcomes.This study aimed to establish a predictive model for ICH in adults receiving ECMO treatment.METHODS:Adults who received ECMO between January 2017 and June 2022 were the subjects of a single-center retrospective study.Patients under the age of 18 years old,with acute ICH before ECMO,with less than 24 h of ECMO support,and with incomplete data were excluded.ICH was diagnosed by a head computed tomography scan.The outcomes included the incidence of ICH,in-hosptial mortality and 28-day mortality.Multivariate logistic regression analysis was used to identify relevant risk factors of ICH,and a predictive model of ICH with a nomogram was constructed.RESULTS:Among the 227 patients included,22 developed ICH during ECMO.Patients with ICH had higher in-hospital mortality (90.9%vs.47.8%,P=0.001) and higher 28-day mortality (81.8%vs.47.3%,P=0.001) than patients with non-ICH.ICH was associated with decreased grey-white-matter ratio (GWR)(OR=0.894,95%CI:0.841–0.951,P<0.001),stroke history (OR=4.265,95%CI:1.052–17.291,P=0.042),fresh frozen plasma (FFP) transfusion (OR=1.208,95%CI:1.037–1.408,P=0.015)and minimum platelet (PLT) count during ECMO support (OR=0.977,95%CI:0.958–0.996,P=0.019).The area under the receiver operating characteristic curve of the ICH predictive model was 0.843 (95%CI:0.762–0.924,P<0.001).CONCLUSION:ECMO-treated patients with ICH had a higher risk of death.GWR,stroke history,FFP transfusion,and the minimum PLT count were independently associated with ICH,and the ICH predictive model showed that these parameters performed well as diagnostic tools.
基金the project SILVARSTAR funded from the Shift2Rail Joint Undertaking under the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement 101015442。
文摘Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping software.Following modern vibration standards and guidelines,the vibration velocity level in a building in each frequency band is expressed as the sum of a force density(source term),line source transfer mobility(propagation term)and building correction factor(receiver term).A hybrid approach is used that allows for a combination of experimental data and numerical predictions,providing increased flexibility and applicability.The train and track properties can be selected from a database or entered as numerical values.The user can select soil impedance and transfer functions from a database,pre-computed for a wide range of parameters with state-of-the-art models.An experimental database of force densities,transfer functions,free field vibration and input parameters is also provided.The building response is estimated by means of building correction factors.Assumptions within the modelling approach are made to reduce computation time but these can influence prediction accuracy;this is quantified for the case of a nominal intercity train running at different speeds on a ballasted track supported by homogeneous soil of varying stiffness.The paper focuses on the influence of these parameters on the compliance of the track–soil system and the free field response.We also demonstrate the use and discuss the validation of the vibration prediction tool for the case of a high-speed train running on a ballasted track in Lincent(Belgium).
基金funded by the National Natural Science Foundation of China(grants No.30960264,31160475 and 42071258)Open Research Fund of TPESER(grant No.TPESER202208)+2 种基金Special Fund for Basic Scientific Research of Central Colleges,Chang’an University,China(grant No.300102353501)Natural Science Foundation of Gansu Province,China(grant No.22JR5RA857)Higher Education Novel Foundation of Gansu Province,China(grant No.2021B-130)。
文摘Potential natural vegetation(PNV)is a valuable reference for ecosystem renovation and has garnered increasing attention worldwide.However,there is limited knowledge on the spatio-temporal distributions,transitional processes,and underlying mechanisms of global natural vegetation,particularly in the case of ongoing climate warming.In this study,we visualize the spatio-temporal pattern and inter-transition procedure of global PNV,analyse the shifting distances and directions of global PNV under the influence of climatic disturbance,and explore the mechanisms of global PNV in response to temperature and precipitation fluctuations.To achieve this,we utilize meteorological data,mainly temperature and precipitation,from six phases:the Last Inter-Glacial(LIG),the Last Glacial Maximum(LGM),the Mid Holocene(MH),the Present Day(PD),2030(20212040)and 2090(2081–2100),and employ a widely-accepted comprehensive and sequential classification sy–stem(CSCS)for global PNV classification.We find that the spatial patterns of five PNV groups(forest,shrubland,savanna,grassland and tundra)generally align with their respective ecotopes,although their distributions have shifted due to fluctuating temperature and precipitation.Notably,we observe an unexpected transition between tundra and savanna despite their geographical distance.The shifts in distance and direction of five PNV groups are mainly driven by temperature and precipitation,although there is heterogeneity among these shifts for each group.Indeed,the heterogeneity observed among different global PNV groups suggests that they may possess varying capacities to adjust to and withstand the impacts of changing climate.The spatio-temporal distributions,mutual transitions and shift tendencies of global PNV and its underlying mechanism in face of changing climate,as revealed in this study,can significantly contribute to the development of strategies for mitigating warming and promoting re-vegetation in degraded regions worldwide.
基金supported by the National Key R&D Program of China (No. 2019YFB1900901)the Fundamental Research Funds for the Central Universities (No. 2021MS032)
文摘Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction models may fail to properly describe the embrittlement trend curves of Chinese domestic RPV steels with relatively low Cu content.Based on the screened surveillance data of Chinese domestic and similar international RPV steels,we have developed a new fluencedependent model for predicting the irradiation-embrittlement trend.The fast neutron fluence(E>1 MeV)exhibited the highest correlation coefficient with the measured TTS data;thus,it is a crucial parameter in the prediction model.The chemical composition has little relevance to the TTS residual calculated by the fluence-dependent model.The results show that the newly developed model with a simple power-law functional form of the neutron fluence is suitable for predicting the irradiation-embrittlement trend of Chinese domestic RPVs,regardless of the effect of the chemical composition.
基金Science and Technology Project of State Grid Ningxia Electric Power Co.,Ltd Research on Distributed Photovoltaic Fine Power Prediction Technology for Day-Ahead Scheduling,5229NX230007.
文摘The accurate prediction of photovoltaic(PV)power generation is an important basis for hybrid grid scheduling.With the expansion of the scale of PV power plants and the popularization of distributed PV,this study proposes a multilayer PV power generation prediction model based on transfer learning to solve the problems of the lack of data on new PV bases and the low accuracy of PV power generation prediction.The proposed model,called DRAM,concatenates a dilated convolutional neural network(DCNN)module with a bidirectional long short-term memory(BiLSTM)module,and integrates an attention mechanism.First,the processed data are input into the DCNN layer,and the dilation convolution mechanism captures the spatial features of the wide sensory field of the input data.Subsequently,the temporal characteristics between the features are extracted in the BiLSTM layer.Finally,an attention mechanism is used to strengthen the key features by assigning weights to efficiently construct the relationship between the features and output variables.In addition,the power prediction accuracy of the new PV sites was improved by transferring the pre-trained model parameters to the new PV site prediction model.In this study,the pre-training of models using data from different source domains and the correlations between these pre-trained models and the target domain were analyzed.
基金This work was supported by the Beijing Nova Program[Z211100002121136]Open Fund Project of State Key Laboratory of Lithospheric Evolution[SKL-K202103]+1 种基金Joint Funds of National Natural Science Foundation of China[U19B6003-02]the National Natural Science Foundation of China[42302149].We would like to thank Prof.Zhu Rixiang from the Institute of Geology and Geophysics,Chinese Academy of Sciences.
文摘With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can be extended,and the prediction of the depth limit of oil accumulation(DLOA),are issues that have attracted significant attention in petroleum geology.Since it is difficult to characterize the evolution of the physical properties of the marine carbonate reservoir with burial depth,and the deepest drilling still cannot reach the DLOA.Hence,the DLOA cannot be predicted by directly establishing the relationship between the ratio of drilling to the dry layer and the depth.In this study,by establishing the relationships between the porosity and the depth and dry layer ratio of the carbonate reservoir,the relationships between the depth and dry layer ratio were obtained collectively.The depth corresponding to a dry layer ratio of 100%is the DLOA.Based on this,a quantitative prediction model for the DLOA was finally built.The results indicate that the porosity of the carbonate reservoir,Lower Ordovician in Tazhong area of Tarim Basin,tends to decrease with burial depth,and manifests as an overall low porosity reservoir in deep layer.The critical porosity of the DLOA was 1.8%,which is the critical geological condition corresponding to a 100%dry layer ratio encountered in the reservoir.The depth of the DLOA was 9,000 m.This study provides a new method for DLOA prediction that is beneficial for a deeper understanding of oil accumulation,and is of great importance for scientific guidance on deep oil drilling.
文摘This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknown uncertainties,we study the tube-based model predictive control scheme that makes use of feedforward neural network.Based on the characteristics of the bounded limit of the average cost function while time approaching infinity,a min-max optimization problem(referred to as min-max OP)is formulated to design the controller.The feasibility of this optimization problem and the practical stability of the controlled system are ensured.To demonstrate the efficacy of the proposed approach,a numerical simulation on a double-tank system is conducted.The results of the simulation serve as verification of the effectualness of the proposed scheme.
基金supported by the National Natural Science Foundationof China(62273029).
文摘Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy.
文摘AIM:To investigate the value of optical coherence tomography angiography(OCTA)indicators in the diagnosis of diabetic retinopathy(DR),and to provide patients with diabetic nephropathy(DN)with more sensitive OCTA screening indicators to detect concurrent DR at an early stage.METHODS:A total of 200 patients who treated in the ophthalmology department of the Seventh Affiliated Hospital,Sun Yat-sen University from 2022 to 2023 were included,including 95 first-diagnosed DR patients and 105 patients without DR,and all patients underwent OCTA examination and a collection of demographics and renal function parameters.After a quality check,automated measurements of the foveal avascular zone area,vessel density(VD),and perfusion density(PD)of both 3 mm×3 mm and 6 mm×6 mm windows were obtained.RESULTS:Using random forest and multivariate Logistic regression methods,we developed a diagnostic model for DR based on 12 variables(age,FBG,SBP,DBP,HbA1c,ALT,ALP,urea/Scr,DM duration,HUA,DN,and CMT).Adding specific OCTA parameters enhanced the efficacy of the existing diagnostic model for DR(outer vessel density in 6 mm×6 mm window,AUC=0.837 vs 0.819,P=0.03).In the study of DN patients,the parameters in the 6 mm×6 mm window improved the diagnostic efficacy of DR(inner VD;outer VD;full VD;outer PD;full PD).CONCLUSION:The outer VD in the 6 mm×6 mm window can enhance the efficacy of the traditional DR diagnostic model.Meanwhile,compared with the 3 mm×3 mm window,the microvascular parameters in the 6 mm×6 mm window focusing on DN patients can be more sensitive to diagnosing the occurrence of DR.
基金funded by the National Natural Science Foundation of China(12102487)Basic and Applied Basic Research Foundation of Guangdong Province,China(2023A1515012339)+1 种基金Shenzhen Science and Technology Program(ZDSYS20210623091808026)the Discovery Grant(RGPIN-2024-06290)of the Natural Sciences and Engineering Research Council of Canada。
文摘This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration stability in cargo transportation.The LD-ASF is further optimized for payload transportation efficiency by a novel coordinate game theory to balance competing control objectives among payload transport speed,stable end body's libration,and overall control input via model predictive control.The transfer period is divided into several sections to reduce computational burden.The validity and efficacy of the proposed LD-ASF and coordinate game-based model predictive control are demonstrated by computer simulation.Numerical results reveal that the optimized LD-ASF results in higher transportation speed,stable end body's libration,lower thrust fuel consumption,and more flexible optimization space than the classic analytical speed function.
基金Supported by the National Natural Science Foundation of China(51275041,61304194)the Doctoral Fund of Ministry of Education of China(20121101120015)the Fundamental Research Funds from Beijing Institute of Technology(20120342011)
文摘A multi-constrained model predictive control ( MPC ) algorithm for trajectory tracking of an autonomous ground vehicle is proposed and tested in this paper. First, to simplify the computa- tion, an active steering linear error model is applied in the MPC controller. Then, a control incre- ment constraint and a relaxing factor are taken into account in the objective function to ensure the smoothness of the trajectory, using a softening constraints technique. In addition, the controller can obtain optimal control sequences which satisfy both the actual kinematic constraints and the actuator constraints. The circular trajectory tracking performance of the proposed method is compared with that of another MPC controller. To verify the trajectory tracking capabilities of the designed control- ler at different desired speed, the simulation experiments are carried out at the speed of 3m/s, 5m/ s and 10m/s. The results demonstrate the MPC controller has a good speed adaptability.
文摘BACKGROUND:Swallowing disorder is a common clinical symptom that can lead to a series of complications,including aspiration,aspiration pneumonia,and malnutrition.This study aimed to investigate risk factors of post-extubation dysphagia(PED)in intensive care unit(ICU)patients with endotracheal intubation,and to develop a risk-predictive model for PED,which could serve as an assessment tool for the prevention and control of PED.METHODS:Patients retrospectively selected from June to December 2021 in a tertiary hospital served as the derivation cohort.Patients recruited from the same hospital from March to June 2022served as the external validation cohort for the predictive model.We used a combination of variable screening and least absolute shrinkage and selection operator(LASSO)regression to select the most useful candidate predictors and checked the multicollinearity of independent variables using the variance inflation factor method.Multivariate logistic regression analysis was performed to calculate the odds ratio(OR;95%confidence interval[95%CI])and P-value for each variable to predict diagnosis.The screened risk factors were introduced into R software to build a nomogram model.The performance of the model,including discrimination ability,calibration,and clinical benefit,was evaluated by plotting the receiver operating characteristic(ROC),calibration,and decision curves.RESULTS:A total of 305 patients were included in this study.Among them,235 patients(53PED vs.182 non-PED)were enrolled in the derivation cohort,while 70 patients(17 PED vs.53 nonPED)were enrolled in the validation cohort.The independent predictors included age,pause of sedatives,level of consciousness,activities of daily living(ADL)score,nasogastric tube,sore throat,and voice disorder.These predictors were used to establish the predictive nomogram model.The model demonstrated good discriminative ability,and the area under the ROC curve(AUC)was 0.945(95%CI 0.904-0.970).Applying the predictive model to the validation cohort demonstrated good discrimination with an AUC of 0.907(95%CI 0.831-0.983)and good calibration.The decision-curve analysis of this nomogram showed a net benefit of the model.CONCLUSION:A predictive model that incorporates age,pause of sedatives,level of consciousness,ADL score,nasogastric tube,sore throat,and voice disorder may have the potential to predict PED in ICU patients.
文摘Background:Attrition rate in new army recruits is higher than in incumbent troops.In the current study,we identified the risk factors for attrition due to injuries and physical fitness failure in recruit training.A variety of predictive models were attempted.Methods:This retrospective cohort included 19,769 Army soldiers of the Australian Defence Force receiving recruit training during a period from 2006 to 2011.Among them,7692 reserve soldiers received a 28-day training course,and the remaining 12,077 full-time soldiers received an 80-day training course.Retrieved data included anthropometric measures,course-specific variables,injury,and physical fitness failure.Multivariate regression was used to develop a variety of models to predict the rate of attrition due to injuries and physical fitness failure.The area under the receiver operating characteristic curve was used to compare the performance of the models.Results:In the overall analysis that included both the 28-day and 80-day courses,the incidence of injury of any type was 27.8%.The 80-day course had a higher rate of injury if calculated per course(34.3%vs.17.6%in the 28-day course),but lower number of injuries per person-year(1.56 vs.2.29).Fitness test failure rate was significantly higher in the 28-day course(30.0%vs.12.1%).The overall attrition rate was 5.2%and 5.0%in the 28-day and 80-day courses,respectively.Stress fracture was common in the 80-day course(n=44)and rare in the 28-day course(n=1).The areas under the receiver operating characteristic curves for the course-specific predictive models were relatively low(ranging from 0.51 to 0.69),consistent with"failed"to"poor"predictive accuracy.The course-combined models performed somewhat better than the course-specific models,with two models having AUC of 0.70 and 0.78,which are considered"fair"predictive accuracy.Conclusion:Attrition rate was similar between 28-day and 80-day courses.In comparison to the 80-day full course,the 28-day course had a lower rate of injury but a higher number of injuries per person-year and of fitness test failure.These findings suggest fitness level at the commencement of training is a critically important factor to consider when designing the course curriculum,particularly short courses.
基金the National Key Research and Development Program of ChinaKey Projects for Strategic International Innovative Cooperation in Science and Technology(2018YFE0207800)+1 种基金Fundamental Research Funds for the Central Universities(2572019BA03)partly by the China Scholarship Council(CSC No.2016DFH417)。
文摘Preventing and suppressing forest fires is one of the main tasks of forestry agencies to reduce resource loss and requires a thorough understanding of the importance of factors affecting their occurrence.This study was carried out in forest plantations on Maoer Mountain in order to develop models for predicting the moisture content of dead fine fuel using meteorological and soil variables.Models by Nelson(Can J For Res 14:597-600,1984)and Van Wagner and Pickett(Can For Service 33,1985)describing the equilibrium moisture content as a function of relative humidity and temperature were evaluated.A random forest and generalized additive models were built to select the most important meteorological variables affecting fuel moisture content.Nelson’s(Can J For Res 14:597-600,1984)model was accurate for Pinus koraiensis,Pinus sylvestris,Larix gmelinii and mixed Larix gmelinii—Ulmus propinqua fuels.The random forest model showed that temperature and relative humidity were the most important factors affecting fuel moisture content.The generalized additive regression model showed that temperature,relative humidity and rain were the main drivers affecting fuel moisture content.In addition to the combined effects of temperature,rainfall and relative humidity,solar radiation or wind speed were also significant on some sites.In P.koraiensis and P.sylvestris plantations,where soil parameters were measured,rain,soil moisture and temperature were the main factors of fuel moisture content.The accuracies of the random forest model and generalized additive model were similar,however,the random forest model was more accurate but underestimated the effect of rain on fuel moisture.
文摘Objectives The aim of this study was to develop a clinical risk model that is predictive of in-hospital mortality in elderly patients hos- pitalized with acute heart failure (AHF). Methods 2486 patients who were 60 years and older from intensive care units of Cardiology De- partment in the hospital were analyzed. Independent risk factors for in-hospital mortality were obtained by binary logistic regression and then used to establish the risk prediction score system (RPSS). The area under the curve (AUC) of receiver operator characteristic and C-statistic test were adopted to assess the performance of RPSS and to compare with previous get with the guidelines-heart failure (GWTG-HF). Re- sults By binary logistic regression analysis, heart rate (OR: 1.043, 95% CI: 1.030-1.057, P 〈 0.001), left ventricular ejection fraction (OR: 0.918, 95% CI: 0.833~).966, P 〈 0.001), pH value (OR: 0.001, 95% CI: 0.000-0.002, P 〈 0.001), renal dysfunction (OR: 0.120, 95% CI: 0.066M).220, P 〈 0.001) and NT-pro BNP (OR: 3.463, 95% CI: 1.870-6.413, P 〈 0.001) were independent risk factors of in-hospital mortal- ity for elderly AHF patients. Additionally, RPSS, which was composed of all the above-mentioned parameters, provided a better risk predic- tion than GWTG-THF (AUC: 0.873 vs. 0.818, P = 0.016). Conclusions Our risk prediction model, RPSS, provided a good prediction for in-hospital mortality in elderly patients with A/IF.
基金supported by National Natural Science Foundation of China(Nos.42072300 and 41702291).
文摘Sandstone is widely distributed in cold regions and the freeze-thaw deterioration of them has caused many geological engineering disasters.As an important and direct index of frost resistance,the strength loss of sandstones under freeze-thaw actions should be investigated to provide a guidance for the stability assessment of geological engineering.In this research,the UCS(Uniaxial compressive strength)loss of six typical sandstones with different water contents after 0,20,40 and 60 freeze-thaw cycles was measured in the laboratory.The experimental results indicated that the freeze-thaw damage was more serious in sandstones containing high water contents,and the critical saturations for causing a significant loss of UCS under freeze-thaw were 60%-80%for these sandstones.Below this critical saturation,the UCS loss of the sandstones was mainly caused by water weakening rather than freeze-thaw damage.Besides,a developed strength prediction model was proposed by combining the exponential decay function and multiple linear regression method.The initial porosity,elastic modulus and tensile strength of fresh sandstones were a good parameter combination to accurately determine the decay constant in this developed model.The main novelty of this model is that it can accurately and easily estimate the UCS loss of sandstones after any freeze-thaw cycle only using the initial parameters of fresh sandstones,but it does not need to perform freeze-thaw and mechanical strength experiments.This study not only provides an accurate prediction model of UCS under freeze-thaw,but also makes a contribution to better understanding the frost resistance mechanism of sandstones.
文摘Background Resistance to anti-platelet therapy is detrimental to patients. Our aim was to establish a predictive model for aspirin resistance to identify high-risk patients and to propose appropriate intervention. Methods Elderly patients (n = 1130) with stable chronic coronary heart disease who were taking aspirin (75 mg) for 〉 2 months were included. Details of their basic characteristics, laboratory test results, and medications were collected. Logistic regression analysis was performed to establish a predictive model for aspirin resistance. Risk score was finally established according to coefficient B and type of variables in logistic regression. The Hosmer-Lemeshow (HL) test and receiver operating characteristic curves were performed to respectively test the calibration and discrimination of the model. Results Seven risk factors were included in our risk score. They were serum creatinine (〉 110 μmol/L, score of 1); fasting blood glucose (〉 7.0 mmol/L, score of 1); hyperlipidemia (score of 1); number of coronary arteries (2 branches, score of 2; 〉 3 branches, score of 4); body mass index (20-25 kg/m2, score of 2; 〉 25 kg/m2, score of 4); percutaneous coronary intervention (score of 2); and smoking (score of 3). The HL test showed P ≥ 0.05 and area under the receiver operating characteristic curve ≥ 0.70. Conclusions We explored and quantified the risk factors for aspirin resistance. Our predictive model showed good calibration and discriminative power and therefore a good foundation for the further study of patients undergoing anti-platelet therapy.
基金financially supported by the Special Fund for Forest Scientific Research in the Public Welfare(No.201404402)Fundamental Research Funds for the Central Universities(Nos.C2572014BA23 and 2572019BA03)。
文摘Studying diurnal variation in the moisture content of fine forest fuel(FFMC)is key to understanding forest fire prevention.This study established models for predicting the diurnal mean,maximum,and minimum FFMC in a boreal forest in China using the relationship between FFMC and meteorological variables.A spline interpolation function is proposed for describing diurnal variations in FFMC.After 1 day with a 1 h field measurement data testing,the results indicate that the accuracy of the sunny slope model was 100%and 84%when the absolute error was<3%and<10%,respectively,whereas the accuracy of the shady slope model was 72%and 76%when the absolute error was<3%and<10%,respectively.The results show that sunny slope and shady slope models can predict and describe diurnal variations in fine fuel moisture content,and provide a basis for forest fire danger prediction in boreal forest ecosystems in China.
基金TheResearchProjectofTubularGoodsRe searchCenterofChinaNationalPetroleumCorporation (No .2 3 5 2 4)andtheResearchProjectofHenanUniversityofScienceandTechnology (No .2 0 0 10 1)
文摘Based on an analysis of the existing models of CO 2 corrosion in literatures and the autoclave simulative experiments, a predictive model of corrosion rate (r corr) in CO 2/H 2S corrosion for oil tubes has been established, in which r corr is expressed as a function of pH, temperature (T), pressure of CO 2 (P CO 2) and pressure of H 2S (P H 2S). The model has been verified by experimental data obtained on N80 steel. The improved features of the predictive model include the following aspects: (1) The influence of temperature on the protectiveness of corrosion film is taken into consideration for establishment of predictive model of the r corr in CO 2/H 2S corrosion. The Equations of scale temperature and scale factor are put forward, and they fit the experimental result very well. (2) The linear relationship still exists between ln r corr and ln P CO 2 in CO 2/H 2S corrosion (as same as that in CO 2 corrosion). Therefore, a correction factor as a function of P H 2S has been introduced into the predictive model in CO 2/H 2S corrosion. (3) The model is compatible with the main existing models.
基金supported by the National Natural Science Foundation of China(Nos.U22A20166,52104141,12172230 and U2013603)the Department of Science and Technology of Guangdong Province(No.2019ZT08G315)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012654).
文摘Interparticle adhesion force has a controlling effect on the physical and mechanical properties of planetary regolith and rocks.The current research on the adhesion force of planetary regolith and rock particles has been primarily based on the assumption of smooth spherical particles to calculate the intergranular adhesion force;this approach lacks consideration for the adhesion force between irregular shaped particles.In our study,an innovative approach was established to directly measure the adhesion force between the arbitrary irregular shaped particles;the probe was modified using simulated lunar soil particles that were a typical representation of planetary regolith.The experimental results showed that for irregular shaped mineral particles,the particle size and mineral composition had no significant influence on the interparticle adhesion force;however,the complex morphology of the contact surface predominantly controlled the adhesion force.As the contact surface roughness increased,the adhesion force gradually decreased,and the rate of decrease gradually slowed;these results were consistent with the change trend predicted via the theoretical models of quantum electrodynamics.Moreover,a theoretical model to predict the adhesion force between the irregular shaped particles was constructed based on Rabinovich’s theory,and the prediction results were correlated with the experimental measurements.