Faster-than-Nyquist(FTN)signaling can improve the spectrum efficiency(SE)of the transmission system.In this paper,we propose a coded modulation FTN(CM-FTN)transmission scheme with precoder and channel shortening(CS)op...Faster-than-Nyquist(FTN)signaling can improve the spectrum efficiency(SE)of the transmission system.In this paper,we propose a coded modulation FTN(CM-FTN)transmission scheme with precoder and channel shortening(CS)optimization to improve bit error rate(BER)performance and reduce the complexity of FTN equalizer.In our proposal,the information rate(IR)or spectral efficiency(SE)is employed and verified as a better performance metric for CM-FTN than the minimum Euclidian distance(MED).The precoder of CM-FTN is optimized for maximizing the IR criterion using the bare-bones particle swarm optimization(BB-PSO)algorithm.Further,a three-carrier CM-FTN system model is used to capture the broadening effect of precoder.Also targeting for the IR maximization,the inter-symbol interference(ISI)length for CS is optimized to reduce the receiver complexity without performance loss.Simulation results demonstrate that our method has a 0.6dB precoding gain compared with the nonprecoding scheme and a maximum of 87.5%of the complexity of FTN equalizer is reduced without BER loss.展开更多
In industrial wireless scenarios,the impulsive noise(IN)incurred by machine running or operation causes a serious influence on the powerlimited industrial wireless communications.It is challenging to ensure efficient ...In industrial wireless scenarios,the impulsive noise(IN)incurred by machine running or operation causes a serious influence on the powerlimited industrial wireless communications.It is challenging to ensure efficient and reliable transmission with quality of service(QoS)guarantee for machinetype communication devices(MTCDs).Considering the IN in the industrial process,this paper establishes the multiuser multiple-input single-output(MU-MISO)orthogonal frequency division multiplexing(OFDM)system model,which combines transmitter and receiver design.Two precoding schemes are designed to improve communication effectiveness at the transmitter.More specifically,the precoder design scheme which combines semi-definite relaxation(SDR)with difference-of-two-convex-function(D.C.)iterative algorithm,is developed by utilizing the Dinkelbach method to improve the system effectiveness.To decrease the computational complexity,we devise the quadratic-based fractional programming(QFP)algorithm,which decouples the variables by using a quadratic transform method.On this basis,the IN mitigation scheme is studied to reduce the system error rate(SER)at the receiver.With the goal of improving the reliability of industrial wireless communications,we propose a hybrid nonlinear IN mitigation(HNINM)scheme and then derive its closed-form expression of SER.The simulation results show that the proposed QFP algorithm achieves superior performance while the HNINM scheme decreases the SER of industrial wireless communications.展开更多
In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutua...In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutually coupled and spatially,temporarily correlated.The imperfection with CSI is primarily due to the channel estimation error at receiver and feedback delay amidst the receiver and transmitter in CSI transmission.Along with,the insufficient spacing between the antenna at transmitter and receiver persuades mutual coupling(MC)among the array elements.In addition,the MIMO channel is presumed to be jointly correlated(Weichselberger correlation model).When we look back on the existing precoder design,it considered spatial correlation alone disregarding joint correlation of antenna array elements.With all above assumption,we have designed a linear precoder which minimizes mean squared error(MSE)subjected to total transmit power constraint for MUMIMO system.The simulation results proven that proposed precoder shows substantial enhancement in bit error rate(BER)performance in comparison with the existing technique.The mathematical analysis corroborates the simulation results.展开更多
Hybrid precoding and combining have been considered as a promising technology, which can provide a compromise between hardware complexity and system performance in millimeter wave multiple-input multiple-output system...Hybrid precoding and combining have been considered as a promising technology, which can provide a compromise between hardware complexity and system performance in millimeter wave multiple-input multiple-output systems. However, most existing hybrid precoder and combiner designs generally assume that infinite resolution phase shifters(PSs) are used to produce the analog beamformers. In a practical scene, the design with accurate PSs can lead to high hardware cost and power consumption. In this paper, we investigate the hybrid precoder and combiner design with finite resolution PSs in millimeter wave systems. We employ alternate optimization as the main strategy to jointly design analog precoder and combiner. In addition, we propose a low complexity algorithm, where the analog beamformers are implemented only by finite resolution PSs to maximize spectral efficiency. Then, the digital precoder and combiner are designed based on the obtained analog beamformers to improve the spectral efficiency. Finally, simulation results and mathematical analysis show that the proposed algorithm with low-resolution PSs can achieve near-optimal performance and have low complexity.展开更多
This paper investigates the resource allocation for rate-splitting multiple access(RSMA)enabled multibeam satellite communication systems.Specifically,we minimize the total unmet user rate,which denotes the difference...This paper investigates the resource allocation for rate-splitting multiple access(RSMA)enabled multibeam satellite communication systems.Specifically,we minimize the total unmet user rate,which denotes the difference between the users’rate requirement and the practical achievable rate,as well as the total transmit power of the satellite by optimizing the precoding,power allocation,and rate allocation,under the per-feed power and rate constraints.To solve the non-convex optimization problem,a twostage scheme is proposed.In particular,in the first stage,we present a precoding scheme by maximizing the signal-to-leakage-plus-noise ratio of each beam to eliminate the inter-beam interference.In the second stage,we introduce auxiliary variables to obtain an upper bound on the objective function under the given precoding matrix and transform the rate constraints of the original problem into second-order cones(SOC)and linear matrix inequations(LMI).Then,the successive convex approximation(SCA)technique is used to obtain suboptimal power and rate allocation solutions.Moreover,the initial feasible solution for power allocation is provided by using the standard interior point method.Finally,numerical results verify the superiority of our proposed solution compared to the benchmark methods in terms of objective function values.展开更多
In addition to conventional antenna-based array,the reconfigurable intelligent surface(RIS)holds promise as an alternative technology for manufacturing massive multi-input multi-output(MIMO)array for beyond 5G communi...In addition to conventional antenna-based array,the reconfigurable intelligent surface(RIS)holds promise as an alternative technology for manufacturing massive multi-input multi-output(MIMO)array for beyond 5G communications.This paper designs a fast algorithm to optimize the RIS-based MIMO precoder for maximizing the spectral efficiency,which includes the digital precoder and the RIS reflection phases.We evaluate the optimality of the algorithm by deriving an RIS channel capacity upper bound utilizing majorization theory.Our scheme can work for an RIS in both frequency flat and frequency selective channels,with either continuously or discretely tunable phases.The simulation results show that the proposed algorithm can achieve the capacity upper bound in some scenarios,which empirically proves its optimality.It is also shown that our algorithm is one-to-two orders of magnitude faster than the state-of-the-art methods in the literature.展开更多
Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear ...Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.展开更多
In this paper,we present a novel and robust nonlinear precoding(NLP)design and detection structure specifically tailored for multiple-input multipleoutput space division multiple access(MIMO-SDMA)systems toward 6G wir...In this paper,we present a novel and robust nonlinear precoding(NLP)design and detection structure specifically tailored for multiple-input multipleoutput space division multiple access(MIMO-SDMA)systems toward 6G wireless.Our approach aims to effectively mitigate the impact of imperfect channel estimation by leveraging the channel fluctuation mean square error(MSE)for reconstructing a highly accurate precoding matrix at the transmitter.Furthermore,we introduce a simplified receiver structure that eliminates the need for equalization,resulting in reduced interference and notable enhancements in overall system performance.We conduct both computer simulations and experimental tests to validate the efficacy of our proposed approach.The results reveals that the proposed NLP scheme offers significant performance improvements,making it particularly well-suited for the forthcoming 6G wireless.展开更多
Faster-than-Nyquist(FTN)signaling is a potential scheme for the sixth generation(6G)communication system to improve the spectral efficiency(SE).In this paper,we propose a joint optimization algorithm of precoding and ...Faster-than-Nyquist(FTN)signaling is a potential scheme for the sixth generation(6G)communication system to improve the spectral efficiency(SE).In this paper,we propose a joint optimization algorithm of precoding and constellation shaping for FTN signaling,which is based on simulated optimization via the bare bones particle swarm optimization(BBPSO).The information-theoretical analysis and simulated error performance show that the proposed method is efficient,which can get a significant improvement in terms of average mutual information(AMI)and bit error rate(BER)performance.The simulated BER results verify the theoretical AMI analysis.Compared with the conventional regular 16QAM FTN scheme,when BER is at 10-5,the joint optimized scheme can obtain 0.50 dB and 0.60 dB performance gain with SE at 3.077 bits/s/Hz and 3.282 bits/s/Hz,respectively.Therefore,the proposed scheme is reliable,and thus suitable for the 6G communication.展开更多
This paper studies large-scale multi-input multi-output(MIMO)orthogonal frequency division multiplexing(OFDM)communications in a broadband frequency-selective channel,where a massive MIMO base station(BS)communicates ...This paper studies large-scale multi-input multi-output(MIMO)orthogonal frequency division multiplexing(OFDM)communications in a broadband frequency-selective channel,where a massive MIMO base station(BS)communicates with multiple users equipped with multi-antenna.We develop a hybrid precoding design to maximize the weighted sum-rate(WSR)of the users by optimizing the digital and the analog precoders alternately.For the digital part,we employ block-diagonalization to eliminate inter-user interference and apply water-filling power allocation to maximize the WSR.For the analog part,the optimization of the PSN is formulated as an unconstrained problem,which can be efficiently solved by a gradient descent method.Numerical results show that the proposed block-diagonal hybrid precoding algorithm can outperform the existing works.展开更多
This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based ...This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based on the proposed structure,a new hybrid precoding algorithm is presented to optimize the energy efficiency,namely,HP-HEDC algorithm.Firstly,via a new defined effective optimal precoding matrix,the problem of optimizing the analog switch precoding matrix is formulated as a sparse representation problem.Thus,the optimal analog switch precoding matrix can be readily obtained by the branch-and-bound method.Then,the digital precoding matrix optimization problem is modeled as a dictionary update problem and solved by the method of optimal direction(MOD).Finally,the diagonal entries of the analog PS precoding matrix are optimized by exhaustive search independently since PS and antenna is one-to-one.Simulation results show that the HEDC structure enjoys low power consumption and satisfactory spectral efficiency.The proposed algorithm presents at least 50%energy efficiency improvement compared with other algorithms when the PS resolution is set as 3-bit.展开更多
In mmWave massive multiple-input multiple-output(MIMO)communication systems,the extension of low-complexity narrowband precoding schemes to be operated on wideband systems under frequency-selective channels remains an...In mmWave massive multiple-input multiple-output(MIMO)communication systems,the extension of low-complexity narrowband precoding schemes to be operated on wideband systems under frequency-selective channels remains an important challenge at the current time.This paper investigates a low complexity wideband hybrid precoding scheme for mmWave massive MIMO multicarrier systems under a single-user,fully-connected hybrid architecture.We show that the radio frequency(RF)precoding/combining vectors can be directly derived from the eigenvectors of the optimal fully-digital covariance matrix over all subcarriers in order to maximize the sum rate of spectral efficiency.We also suggest a new method that iteratively reduces the residual error between the covariance matrix and the sum of products of precoding matrices over all the subcarriers to improve the performance in the case where the number of RF chains is higher than the number of streams.The results of the simulation show that the proposed schemes’complexity is low compared to the present methods,and their performance can almost reach the upper bound achieved by the optimal full-baseband design.展开更多
In millimeter wave(mmWave) multiple-input multiple-output(MIMO) systems, hybrid precoding has been widely used to overcome the severe propagation loss. In order to improve the spectrum efficiency with low complexity, ...In millimeter wave(mmWave) multiple-input multiple-output(MIMO) systems, hybrid precoding has been widely used to overcome the severe propagation loss. In order to improve the spectrum efficiency with low complexity, we propose a joint hybrid precoding algorithm for single-user mmWave MIMO systems in this paper. By using the concept of equivalent channel, the proposed algorithm skillfully utilizes the idea of alternating optimization to complete the design of RF precoder and combiner. Then, the baseband precoder and combiner are computed by calculating the singular value decomposition of the equivalent channel. Simulation results demonstrate that the proposed algorithm can achieve satisfactory performance with quite low complexity. Moreover, we investigate the effects of quantization on the analog components and find that the proposed scheme is effective even with coarse quantization.展开更多
In this paper, the performance of hybrid precoding is investigated for mmWave massive MIMO systems with different antenna arrays. The hybrid precoding with partially connected architecture (PCA) is adopted. The spectr...In this paper, the performance of hybrid precoding is investigated for mmWave massive MIMO systems with different antenna arrays. The hybrid precoding with partially connected architecture (PCA) is adopted. The spectral efficiency (SE) and received energy efficiency (EE) are investigated by considering four types of antenna arrays, including uniform linear array (ULA), uniform rectangular planar array (URPA), uniform hexagonal planar array (UHPA), and uniform circular planar array (UCPA), respectively. We focus on analysis at the antenna response vector and utilize the idea of orthogonal matching pursuit algorithm to seek the optimal hybrid precoder. Furthermore, the trade-off of precoding architectures is studied between SE and received EE. Simulation results show that if the uniform planar array antenna is more concentrated, the SE and receive EE will be higher. Considering SE and received EE, the performance of planar arrays outperform linear array. There exist different optimal radio-frequency chain numbers to maximize the SE for planar array and linear array. In addition, the PCA can achieve relatively higher received EE while the SE is close to the fully connected architecture and the full digital architecture.展开更多
Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the ...Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.展开更多
Different from conventional cellular networks, a maritime communication base station(BS) has to cover a much wider area due to the limitation of available BS sites. Accordingly the performance of users far away from t...Different from conventional cellular networks, a maritime communication base station(BS) has to cover a much wider area due to the limitation of available BS sites. Accordingly the performance of users far away from the BS is poor in general. This renders the fairness among users a challenging issue for maritime communications. In this paper, we consider a practical massive MIMO maritime BS with hybrid digital and analog precoding. Only the large-scale channel state information at the transmitter(CSIT) is considered so as to reduce the implementation complexity and overhead of the system. On this basis, we address the problem of fairness-oriented precoding design. A max-min optimization problem is formulated and solved in an iterative way. Simulation results demonstrate that the proposed scheme performs much better than conventional hybrid precoding algorithms in terms of minimum achievable rate of all the users, for the typical three-ray maritime channel model.展开更多
Terahertz(THz)communication is considered to be a promising technology for future 6G network.To overcome the severe attenuation and relieve the high power consumption,massive multipleinput multiple-output(MIMO)with hy...Terahertz(THz)communication is considered to be a promising technology for future 6G network.To overcome the severe attenuation and relieve the high power consumption,massive multipleinput multiple-output(MIMO)with hybrid precoding has been widely considered for THz communication.However,accurate wideband channel estimation,which is essential for hybrid precoding,is challenging in THz massive MIMO systems.The existing wideband channel estimation schemes based on the ideal assumption of common sparse channel support will suffer from a severe performance loss due to the beam split effect.In this paper,we propose a beam split pattern detection based channel estimation scheme to realize reliable wideband channel estimation in THz massive MIMO systems.Specifically,a comprehensive analysis on the angle-domain sparse structure of the wideband channel is provided by considering the beam split effect.Based on the analysis,we define a series of index sets called as beam split patterns,which are proved to have a one-to-one match to different physical channel directions.Inspired by this one-to-one match,we propose to estimate the physical channel direction by exploiting beam split patterns at first.Then,the sparse channel supports at different subcarriers can be obtained by utilizing a support detection window.This support detection window is generated by expanding the beam split pattern which is determined by the obtained physical channel direction.The above estimation procedure will be repeated path by path until all path components are estimated.Finally,the wideband channel can be recovered by calculating the elements on the total sparse channel support at all subcarriers.The proposed scheme exploits the wideband channel property implied by the beam split effect,i.e.,beam split pattern,which can significantly improve the channel estimation accuracy.Simulation results show that the proposed scheme is able to achieve higher accuracy than existing schemes.展开更多
Millimeter wave(mmWave) and large-scale multiple input multiple output(MIMO) are two emerging technologies in fifth-generation wireless communication systems. The power consumption and hardware cost of radio frequency...Millimeter wave(mmWave) and large-scale multiple input multiple output(MIMO) are two emerging technologies in fifth-generation wireless communication systems. The power consumption and hardware cost of radio frequency(RF) chains increase exponentially with the bit resolution of analog-to-digital converters(ADCs) and digital-to-analog converters(DACs). One promising solution is to employ few RF chains with low-bit ADCs and DACs. In this paper, we consider mmWave large-scale MIMO systems with low bits DACs and ADCs. Leveraging on the Bussgang theorem and the additive quantization noise model(AQNM), a closed-form expression of the achievable rate is derived to show the effect of the ADCs? and DACs? resolution. Moreover, an orthogonal matching pursuit(OMP) based hybrid precoding algorithm is proposed to increase the achievable rate. Our results show that the impact of DACs is more pronounced than the impact of ADCs. Furthermore, 5-bit ADCs and DACs are sufficient at the transceiver to operate without a significant performance loss.展开更多
In this paper,an expression for the user’s achievable data rate in the multi-user multiple-input multiple-output(MU-MIMO)system with limited feedback(LF)of channel state information(CSI)is derived.The energy efficien...In this paper,an expression for the user’s achievable data rate in the multi-user multiple-input multiple-output(MU-MIMO)system with limited feedback(LF)of channel state information(CSI)is derived.The energy efficiency(EE)is optimized through power allocation under quality of service(QoS)constraints.Based on mathematical equivalence and Lagrange multiplier approach,an energy-efficient unequal power allocation(EEUPA)with LF of CSI scheme is proposed.The simulation results show that as the number of transmitting antennas increases,the EE also increases which is promising for the next generation wireless communication networks.Moreover,it can be seen that the QoS requirement has an effect on the EE of the system.Ultimately,the proposed EEUPA with LF of CSI algorithm performs better than the existing energy-efficient equal power allocation(EEEPA)with LF of CSI schemes.展开更多
Massive multiple-input multiple-output provides improved energy efficiency and spectral efficiency in 5 G. However it requires large-scale matrix computation with tremendous complexity, especially for data detection a...Massive multiple-input multiple-output provides improved energy efficiency and spectral efficiency in 5 G. However it requires large-scale matrix computation with tremendous complexity, especially for data detection and precoding. Recently, many detection and precoding methods were proposed using approximate iteration methods, which meet the demand of precision with low complexity. In this paper, we compare these approximate iteration methods in precision and complexity, and then improve these methods with iteration refinement at the cost of little complexity and no extra hardware resource. By derivation, our proposal is a combination of three approximate iteration methods in essence and provides remarkable precision improvement on desired vectors. The results show that our proposal provides 27%-83% normalized mean-squared error improvement of the detection symbol vector and precoding symbol vector. Moreover, we find the bit-error rate is mainly controlled by soft-input soft-output Viterbi decoding when using approximate iteration methods. Further, only considering the effect on soft-input soft-output Viterbi decoding, the simulation results show that using a rough estimation for the filter matrix of minimum mean square error detection to calculating log-likelihood ratio could provideenough good bit-error rate performance, especially when the ratio of base station antennas number and the users number is not too large.展开更多
基金This work was supported by National Natural Science Foundation of China(No.61961014).
文摘Faster-than-Nyquist(FTN)signaling can improve the spectrum efficiency(SE)of the transmission system.In this paper,we propose a coded modulation FTN(CM-FTN)transmission scheme with precoder and channel shortening(CS)optimization to improve bit error rate(BER)performance and reduce the complexity of FTN equalizer.In our proposal,the information rate(IR)or spectral efficiency(SE)is employed and verified as a better performance metric for CM-FTN than the minimum Euclidian distance(MED).The precoder of CM-FTN is optimized for maximizing the IR criterion using the bare-bones particle swarm optimization(BB-PSO)algorithm.Further,a three-carrier CM-FTN system model is used to capture the broadening effect of precoder.Also targeting for the IR maximization,the inter-symbol interference(ISI)length for CS is optimized to reduce the receiver complexity without performance loss.Simulation results demonstrate that our method has a 0.6dB precoding gain compared with the nonprecoding scheme and a maximum of 87.5%of the complexity of FTN equalizer is reduced without BER loss.
基金supported in part by the National Natural Science Foundation of China under Grant 62071472in part the Program for“Industrial Io T and Emergency Collaboration”Innovative Research Team in CUMT(No.2020ZY002)。
文摘In industrial wireless scenarios,the impulsive noise(IN)incurred by machine running or operation causes a serious influence on the powerlimited industrial wireless communications.It is challenging to ensure efficient and reliable transmission with quality of service(QoS)guarantee for machinetype communication devices(MTCDs).Considering the IN in the industrial process,this paper establishes the multiuser multiple-input single-output(MU-MISO)orthogonal frequency division multiplexing(OFDM)system model,which combines transmitter and receiver design.Two precoding schemes are designed to improve communication effectiveness at the transmitter.More specifically,the precoder design scheme which combines semi-definite relaxation(SDR)with difference-of-two-convex-function(D.C.)iterative algorithm,is developed by utilizing the Dinkelbach method to improve the system effectiveness.To decrease the computational complexity,we devise the quadratic-based fractional programming(QFP)algorithm,which decouples the variables by using a quadratic transform method.On this basis,the IN mitigation scheme is studied to reduce the system error rate(SER)at the receiver.With the goal of improving the reliability of industrial wireless communications,we propose a hybrid nonlinear IN mitigation(HNINM)scheme and then derive its closed-form expression of SER.The simulation results show that the proposed QFP algorithm achieves superior performance while the HNINM scheme decreases the SER of industrial wireless communications.
文摘In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutually coupled and spatially,temporarily correlated.The imperfection with CSI is primarily due to the channel estimation error at receiver and feedback delay amidst the receiver and transmitter in CSI transmission.Along with,the insufficient spacing between the antenna at transmitter and receiver persuades mutual coupling(MC)among the array elements.In addition,the MIMO channel is presumed to be jointly correlated(Weichselberger correlation model).When we look back on the existing precoder design,it considered spatial correlation alone disregarding joint correlation of antenna array elements.With all above assumption,we have designed a linear precoder which minimizes mean squared error(MSE)subjected to total transmit power constraint for MUMIMO system.The simulation results proven that proposed precoder shows substantial enhancement in bit error rate(BER)performance in comparison with the existing technique.The mathematical analysis corroborates the simulation results.
基金supported by NSFC (No. 61571055)fund of SKL of MMW (No. K201815)Important National Science & Technology Specific Projects (2017ZX03001028)
文摘Hybrid precoding and combining have been considered as a promising technology, which can provide a compromise between hardware complexity and system performance in millimeter wave multiple-input multiple-output systems. However, most existing hybrid precoder and combiner designs generally assume that infinite resolution phase shifters(PSs) are used to produce the analog beamformers. In a practical scene, the design with accurate PSs can lead to high hardware cost and power consumption. In this paper, we investigate the hybrid precoder and combiner design with finite resolution PSs in millimeter wave systems. We employ alternate optimization as the main strategy to jointly design analog precoder and combiner. In addition, we propose a low complexity algorithm, where the analog beamformers are implemented only by finite resolution PSs to maximize spectral efficiency. Then, the digital precoder and combiner are designed based on the obtained analog beamformers to improve the spectral efficiency. Finally, simulation results and mathematical analysis show that the proposed algorithm with low-resolution PSs can achieve near-optimal performance and have low complexity.
文摘This paper investigates the resource allocation for rate-splitting multiple access(RSMA)enabled multibeam satellite communication systems.Specifically,we minimize the total unmet user rate,which denotes the difference between the users’rate requirement and the practical achievable rate,as well as the total transmit power of the satellite by optimizing the precoding,power allocation,and rate allocation,under the per-feed power and rate constraints.To solve the non-convex optimization problem,a twostage scheme is proposed.In particular,in the first stage,we present a precoding scheme by maximizing the signal-to-leakage-plus-noise ratio of each beam to eliminate the inter-beam interference.In the second stage,we introduce auxiliary variables to obtain an upper bound on the objective function under the given precoding matrix and transform the rate constraints of the original problem into second-order cones(SOC)and linear matrix inequations(LMI).Then,the successive convex approximation(SCA)technique is used to obtain suboptimal power and rate allocation solutions.Moreover,the initial feasible solution for power allocation is provided by using the standard interior point method.Finally,numerical results verify the superiority of our proposed solution compared to the benchmark methods in terms of objective function values.
基金supported by National Natural Science Foundation of China Grant No.61771005。
文摘In addition to conventional antenna-based array,the reconfigurable intelligent surface(RIS)holds promise as an alternative technology for manufacturing massive multi-input multi-output(MIMO)array for beyond 5G communications.This paper designs a fast algorithm to optimize the RIS-based MIMO precoder for maximizing the spectral efficiency,which includes the digital precoder and the RIS reflection phases.We evaluate the optimality of the algorithm by deriving an RIS channel capacity upper bound utilizing majorization theory.Our scheme can work for an RIS in both frequency flat and frequency selective channels,with either continuously or discretely tunable phases.The simulation results show that the proposed algorithm can achieve the capacity upper bound in some scenarios,which empirically proves its optimality.It is also shown that our algorithm is one-to-two orders of magnitude faster than the state-of-the-art methods in the literature.
基金supported by the Key R&D Project of the Ministry of Science and Technology of China(2020YFB1808005)。
文摘Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.
基金supported in part by National Key R&D Program of China(2020YFB1807203)National Science Foundation of China under Grant number 62071111+2 种基金the Fundamental Research Funds for the Central Universities under Grant 2242022k60006Natural Science Foundation of Sichuan Province under Grant number 2022NSFSC0487the National Key Laboratory of Wireless Communications Foundation under Grant IFN20230104。
文摘In this paper,we present a novel and robust nonlinear precoding(NLP)design and detection structure specifically tailored for multiple-input multipleoutput space division multiple access(MIMO-SDMA)systems toward 6G wireless.Our approach aims to effectively mitigate the impact of imperfect channel estimation by leveraging the channel fluctuation mean square error(MSE)for reconstructing a highly accurate precoding matrix at the transmitter.Furthermore,we introduce a simplified receiver structure that eliminates the need for equalization,resulting in reduced interference and notable enhancements in overall system performance.We conduct both computer simulations and experimental tests to validate the efficacy of our proposed approach.The results reveals that the proposed NLP scheme offers significant performance improvements,making it particularly well-suited for the forthcoming 6G wireless.
基金supported by Fundamental Research Program of Shanxi Province(202203021212159)。
文摘Faster-than-Nyquist(FTN)signaling is a potential scheme for the sixth generation(6G)communication system to improve the spectral efficiency(SE).In this paper,we propose a joint optimization algorithm of precoding and constellation shaping for FTN signaling,which is based on simulated optimization via the bare bones particle swarm optimization(BBPSO).The information-theoretical analysis and simulated error performance show that the proposed method is efficient,which can get a significant improvement in terms of average mutual information(AMI)and bit error rate(BER)performance.The simulated BER results verify the theoretical AMI analysis.Compared with the conventional regular 16QAM FTN scheme,when BER is at 10-5,the joint optimized scheme can obtain 0.50 dB and 0.60 dB performance gain with SE at 3.077 bits/s/Hz and 3.282 bits/s/Hz,respectively.Therefore,the proposed scheme is reliable,and thus suitable for the 6G communication.
基金supported by National Natural Science Foundation of China(No.61771005)
文摘This paper studies large-scale multi-input multi-output(MIMO)orthogonal frequency division multiplexing(OFDM)communications in a broadband frequency-selective channel,where a massive MIMO base station(BS)communicates with multiple users equipped with multi-antenna.We develop a hybrid precoding design to maximize the weighted sum-rate(WSR)of the users by optimizing the digital and the analog precoders alternately.For the digital part,we employ block-diagonalization to eliminate inter-user interference and apply water-filling power allocation to maximize the WSR.For the analog part,the optimization of the PSN is formulated as an unconstrained problem,which can be efficiently solved by a gradient descent method.Numerical results show that the proposed block-diagonal hybrid precoding algorithm can outperform the existing works.
基金supported by the National Natural Science Foundation of China(Grant No.61971117)the Natural Science Foundation of Hebei Province(Grant No.F2020501007)the S&T Program of Hebei(No.22377717D)。
文摘This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based on the proposed structure,a new hybrid precoding algorithm is presented to optimize the energy efficiency,namely,HP-HEDC algorithm.Firstly,via a new defined effective optimal precoding matrix,the problem of optimizing the analog switch precoding matrix is formulated as a sparse representation problem.Thus,the optimal analog switch precoding matrix can be readily obtained by the branch-and-bound method.Then,the digital precoding matrix optimization problem is modeled as a dictionary update problem and solved by the method of optimal direction(MOD).Finally,the diagonal entries of the analog PS precoding matrix are optimized by exhaustive search independently since PS and antenna is one-to-one.Simulation results show that the HEDC structure enjoys low power consumption and satisfactory spectral efficiency.The proposed algorithm presents at least 50%energy efficiency improvement compared with other algorithms when the PS resolution is set as 3-bit.
文摘In mmWave massive multiple-input multiple-output(MIMO)communication systems,the extension of low-complexity narrowband precoding schemes to be operated on wideband systems under frequency-selective channels remains an important challenge at the current time.This paper investigates a low complexity wideband hybrid precoding scheme for mmWave massive MIMO multicarrier systems under a single-user,fully-connected hybrid architecture.We show that the radio frequency(RF)precoding/combining vectors can be directly derived from the eigenvectors of the optimal fully-digital covariance matrix over all subcarriers in order to maximize the sum rate of spectral efficiency.We also suggest a new method that iteratively reduces the residual error between the covariance matrix and the sum of products of precoding matrices over all the subcarriers to improve the performance in the case where the number of RF chains is higher than the number of streams.The results of the simulation show that the proposed schemes’complexity is low compared to the present methods,and their performance can almost reach the upper bound achieved by the optimal full-baseband design.
基金supported by NSFC (No. 61571055)fund of SKL of MMW (No. K201815) Important National Science & Technology Specific Projects (2017ZX03001028)
文摘In millimeter wave(mmWave) multiple-input multiple-output(MIMO) systems, hybrid precoding has been widely used to overcome the severe propagation loss. In order to improve the spectrum efficiency with low complexity, we propose a joint hybrid precoding algorithm for single-user mmWave MIMO systems in this paper. By using the concept of equivalent channel, the proposed algorithm skillfully utilizes the idea of alternating optimization to complete the design of RF precoder and combiner. Then, the baseband precoder and combiner are computed by calculating the singular value decomposition of the equivalent channel. Simulation results demonstrate that the proposed algorithm can achieve satisfactory performance with quite low complexity. Moreover, we investigate the effects of quantization on the analog components and find that the proposed scheme is effective even with coarse quantization.
基金supported by the National Natural Science Foundation of China (No.61961018)the Jiangxi Province Foundation for Distinguished Young Scholar (No.20192BCB23013)+1 种基金the Jiangxi Province Natural Science Foundation of China (No.20171BAB202001, 20192ACB21003)the Science Program of Jiangxi Educational Committee (No.GJJ180307)
文摘In this paper, the performance of hybrid precoding is investigated for mmWave massive MIMO systems with different antenna arrays. The hybrid precoding with partially connected architecture (PCA) is adopted. The spectral efficiency (SE) and received energy efficiency (EE) are investigated by considering four types of antenna arrays, including uniform linear array (ULA), uniform rectangular planar array (URPA), uniform hexagonal planar array (UHPA), and uniform circular planar array (UCPA), respectively. We focus on analysis at the antenna response vector and utilize the idea of orthogonal matching pursuit algorithm to seek the optimal hybrid precoder. Furthermore, the trade-off of precoding architectures is studied between SE and received EE. Simulation results show that if the uniform planar array antenna is more concentrated, the SE and receive EE will be higher. Considering SE and received EE, the performance of planar arrays outperform linear array. There exist different optimal radio-frequency chain numbers to maximize the SE for planar array and linear array. In addition, the PCA can achieve relatively higher received EE while the SE is close to the fully connected architecture and the full digital architecture.
基金supported by the National Natural Science Foundation of China for Outstanding Young Scholars (Grant No. 61722109)the National Natural Science Foundation of China (Grant No. 61571270)the Royal Academy of Engineering through the UK–China Industry Academia Partnership Programme Scheme (Grant No. UK-CIAPP\49)
文摘Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.
基金supported in part by the National Science Foundation of China under grant No. 91638205,grant No. 61771286, and grant No. 61701457, and grant No. 61621091
文摘Different from conventional cellular networks, a maritime communication base station(BS) has to cover a much wider area due to the limitation of available BS sites. Accordingly the performance of users far away from the BS is poor in general. This renders the fairness among users a challenging issue for maritime communications. In this paper, we consider a practical massive MIMO maritime BS with hybrid digital and analog precoding. Only the large-scale channel state information at the transmitter(CSIT) is considered so as to reduce the implementation complexity and overhead of the system. On this basis, we address the problem of fairness-oriented precoding design. A max-min optimization problem is formulated and solved in an iterative way. Simulation results demonstrate that the proposed scheme performs much better than conventional hybrid precoding algorithms in terms of minimum achievable rate of all the users, for the typical three-ray maritime channel model.
基金supported in part by the National Key Research and Development Program of China(Grant No.2020YFB1805005)the National Natural Science Foundation of China(Grant No.62031019)the European Commission through the H2020-MSCA-ITN META WIRELESS Research Project under Grant 956256.
文摘Terahertz(THz)communication is considered to be a promising technology for future 6G network.To overcome the severe attenuation and relieve the high power consumption,massive multipleinput multiple-output(MIMO)with hybrid precoding has been widely considered for THz communication.However,accurate wideband channel estimation,which is essential for hybrid precoding,is challenging in THz massive MIMO systems.The existing wideband channel estimation schemes based on the ideal assumption of common sparse channel support will suffer from a severe performance loss due to the beam split effect.In this paper,we propose a beam split pattern detection based channel estimation scheme to realize reliable wideband channel estimation in THz massive MIMO systems.Specifically,a comprehensive analysis on the angle-domain sparse structure of the wideband channel is provided by considering the beam split effect.Based on the analysis,we define a series of index sets called as beam split patterns,which are proved to have a one-to-one match to different physical channel directions.Inspired by this one-to-one match,we propose to estimate the physical channel direction by exploiting beam split patterns at first.Then,the sparse channel supports at different subcarriers can be obtained by utilizing a support detection window.This support detection window is generated by expanding the beam split pattern which is determined by the obtained physical channel direction.The above estimation procedure will be repeated path by path until all path components are estimated.Finally,the wideband channel can be recovered by calculating the elements on the total sparse channel support at all subcarriers.The proposed scheme exploits the wideband channel property implied by the beam split effect,i.e.,beam split pattern,which can significantly improve the channel estimation accuracy.Simulation results show that the proposed scheme is able to achieve higher accuracy than existing schemes.
基金supported in part by the National Key R&D Program of China (No. 2016YFE0200900)Major Projects of Beijing Municipal Science and Technology Commission (No. Z181100003218010)+3 种基金National Natural Science Foundation of China (Nos. 61601020, 61725101 and U1834210)the Beijing Natural Science Foundation (Nos. 4182049, L171005 and L172020)the open research fund of National Mobile Communications Research Laboratory, Southeast University (No. 2018D04)Key Laboratory of Optical Communication and Networks (No. KLOCN2018002)
文摘Millimeter wave(mmWave) and large-scale multiple input multiple output(MIMO) are two emerging technologies in fifth-generation wireless communication systems. The power consumption and hardware cost of radio frequency(RF) chains increase exponentially with the bit resolution of analog-to-digital converters(ADCs) and digital-to-analog converters(DACs). One promising solution is to employ few RF chains with low-bit ADCs and DACs. In this paper, we consider mmWave large-scale MIMO systems with low bits DACs and ADCs. Leveraging on the Bussgang theorem and the additive quantization noise model(AQNM), a closed-form expression of the achievable rate is derived to show the effect of the ADCs? and DACs? resolution. Moreover, an orthogonal matching pursuit(OMP) based hybrid precoding algorithm is proposed to increase the achievable rate. Our results show that the impact of DACs is more pronounced than the impact of ADCs. Furthermore, 5-bit ADCs and DACs are sufficient at the transceiver to operate without a significant performance loss.
基金supported in part by the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0883)in part by the Key Technologies R & D Program of Jiangsu Province (BE2018733)in part by Open Research Fund of Jiangsu Engineering Research Center of Communication and Network Technology, NJUPT
文摘In this paper,an expression for the user’s achievable data rate in the multi-user multiple-input multiple-output(MU-MIMO)system with limited feedback(LF)of channel state information(CSI)is derived.The energy efficiency(EE)is optimized through power allocation under quality of service(QoS)constraints.Based on mathematical equivalence and Lagrange multiplier approach,an energy-efficient unequal power allocation(EEUPA)with LF of CSI scheme is proposed.The simulation results show that as the number of transmitting antennas increases,the EE also increases which is promising for the next generation wireless communication networks.Moreover,it can be seen that the QoS requirement has an effect on the EE of the system.Ultimately,the proposed EEUPA with LF of CSI algorithm performs better than the existing energy-efficient equal power allocation(EEEPA)with LF of CSI schemes.
文摘Massive multiple-input multiple-output provides improved energy efficiency and spectral efficiency in 5 G. However it requires large-scale matrix computation with tremendous complexity, especially for data detection and precoding. Recently, many detection and precoding methods were proposed using approximate iteration methods, which meet the demand of precision with low complexity. In this paper, we compare these approximate iteration methods in precision and complexity, and then improve these methods with iteration refinement at the cost of little complexity and no extra hardware resource. By derivation, our proposal is a combination of three approximate iteration methods in essence and provides remarkable precision improvement on desired vectors. The results show that our proposal provides 27%-83% normalized mean-squared error improvement of the detection symbol vector and precoding symbol vector. Moreover, we find the bit-error rate is mainly controlled by soft-input soft-output Viterbi decoding when using approximate iteration methods. Further, only considering the effect on soft-input soft-output Viterbi decoding, the simulation results show that using a rough estimation for the filter matrix of minimum mean square error detection to calculating log-likelihood ratio could provideenough good bit-error rate performance, especially when the ratio of base station antennas number and the users number is not too large.