期刊文献+
共找到4,766篇文章
< 1 2 239 >
每页显示 20 50 100
Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate
1
作者 Suixin Zhan Shaokang Yuan +6 位作者 Yuming Bai Fu Liu Bohan Zhang Weijia Han Tao Wang Shengxiang Wang Cai Zhou 《Chinese Physics B》 2025年第2期448-452,共5页
Electronics over flexible substrates offer advantages of flexibility, portability and low cost, and promising applications in the areas of energy, information, defense science and medical service. In recent years, tre... Electronics over flexible substrates offer advantages of flexibility, portability and low cost, and promising applications in the areas of energy, information, defense science and medical service. In recent years, tremendous progress has been witnessed in the development of flexible wearable devices that can be potentially massively deployed. Of particular interest are intelligent wearable devices, such as sensors and storage cells, which can be integrated by flexible magnetoelectronic devices based on magnetic thin films. To examine this further, the magnetic properties of FeNi thin films with different thicknesses grown on flexible graphene substrate are investigated at room temperature. The coercivity increases with increasing thicknesses of FeNi thin film, which can be attributed to the increase of grain size and decrease of surface roughness. Moreover, the thickness modulated magnetic property shows a magnetic anisotropy shift increase with varying thicknesses of FeNi thin film by using measurements based on ferromagnetic resonance, which further enhances the resonance frequency. In addition, the resonance peak is quite stable after bending it for ten cycles. The result is promising for the future design of flexible magnetoelectronic devices. 展开更多
关键词 resonance frequency FeNi thin film flexible graphene substrate magnetic property
在线阅读 下载PDF
Influence of substrate effect on near-field radiative modulator based on biaxial hyperbolic materials
2
作者 刘睿一 刘皓佗 +2 位作者 胡杨 崔峥 吴小虎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期56-64,共9页
Relative rotation between the emitter and receiver could effectively modulate the near-field radiative heat transfer(NFRHT)in anisotropic media.Due to the strong in-plane anisotropy,natural hyperbolic materials can be... Relative rotation between the emitter and receiver could effectively modulate the near-field radiative heat transfer(NFRHT)in anisotropic media.Due to the strong in-plane anisotropy,natural hyperbolic materials can be used to construct near-field radiative modulators with excellent modulation effects.However,in practical applications,natural hyperbolic materials need to be deposited on the substrate,and the influence of substrate on modulation effect has not been studied yet.In this work,we investigate the influence of substrate effect on near-field radiative modulator based onα-MoO_(3).The results show that compared to the situation without a substrate,the presence of both lossless and lossy substrate will reduce the modulation contrast(MC)for different film thicknesses.When the real or imaginary component of the substrate permittivity increases,the mismatch of hyperbolic phonon polaritons(HPPs)weakens,resulting in a reduction in MC.By reducing the real and imaginary components of substrate permittivity,the MC can be significantly improved,reaching 4.64 forε_(s)=3 at t=10 nm.This work indicates that choosing a substrate with a smaller permittivity helps to achieve a better modulation effect,and provides guidance for the application of natural hyperbolic materials in the near-field radiative modulator. 展开更多
关键词 near-field radiative modulator substrate effect hyperbolic material modulation contrast
在线阅读 下载PDF
Facile electrochemical surface-alloying and etching of Au wires to enable high-performance substrates for surface enhanced Raman scattering
3
作者 Yawen Zhan Guobin Zhang +8 位作者 Junda Shen Binbin Zhou Chenghao Zhao Junmei Guo Ming Wen Zhilong Tan Lirong Zheng Jian Lu Yang Yang Li 《Nano Materials Science》 EI CAS CSCD 2024年第3期305-311,共7页
Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with... Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques,greatly restricting their practical applications.A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report.Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea,in a one-pot one-step manner.X-rays absorption fine structure(XAFS)spectroscopy confirms that the AuAg alloy is induced at the surface.The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates,enabling a remarkably sensitive detection of Rhodamine B(a detection limit of 10^(-14)M,and uniform strong response throughout the substrates at 10^(-12)M). 展开更多
关键词 ELECTRODEPOSITION DEALLOYING Surface-alloyed Noble metals Surface enhanced Raman spectroscopy substrates
在线阅读 下载PDF
Exploring the mechanisms of calcium carbonate deposition on various substrates with implications for effective anti-scaling material selection
4
作者 Lu Gong Fei-Yi Wu +4 位作者 Ming-Fei Pan Jun Huang Hao Zhang Jing-Li Luo Hong-Bo Zeng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2870-2880,共11页
The unexpected scaling phenomena have resulted in significant damages to the oil and gas industries,leading to issues such as heat exchanger failures and pipeline clogging.It is of practical and fundamental importance... The unexpected scaling phenomena have resulted in significant damages to the oil and gas industries,leading to issues such as heat exchanger failures and pipeline clogging.It is of practical and fundamental importance to understand the scaling mechanisms and develop efficient anti-scaling strategies.However,the underlying surface interaction mechanisms of scalants(e.g.,calcite)with various substrates are still not fully understood.In this work,the colloidal probe atomic force microscopy(AFM)technique has been applied to directly quantify the surface forces between calcite particles and different metallic substrates,including carbon steel(CR1018),low alloy steel(4140),stainless steel(SS304)and tungsten carbide,under different water chemistries(i.e.,salinity and pH).Measured force profiles revealed that the attractive van der Waals(VDW)interaction contributed to the attachment of the calcium carbonate particles on substrate surfaces,while the repulsive electric double layer(EDL)interactions could inhibit the attachment behaviors.High salinity and acidic p H conditions of aqueous solutions could weaken the EDL repulsion and promote the attachment behavior.The adhesion of calcite particles with CR1018 and4140 substrates was much stronger than that with SS304 and tungsten carbide substrates.The bulk scaling tests in aqueous solutions from an industrial oil production process showed that much more severe scaling behaviors of calcite was detected on CR1018 and 4140 than those on SS304 and tungsten carbide,which agreed with surface force measurement results.Besides,high salinity and acidic p H can significantly enhance the scaling phenomena.This work provides fundamental insights into the scaling mechanisms of calcite at the nanoscale with practical implications for the selection of suitable antiscaling materials in petroleum industries. 展开更多
关键词 Scaling phenomenon Metallic substrates Surface forces Bulk scaling tests
在线阅读 下载PDF
Enhanced near-field radiative heat transfer between borophene sheets on different substrates
5
作者 Xiaoyang Han Chunzhen Fan 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期442-447,共6页
Near-field radiative heat transfer(NFRHT)has the potential to exceed the blackbody limit by several orders of magnitude,offering significant opportunities for energy harvesting.In this study,we have examined the NFRHT... Near-field radiative heat transfer(NFRHT)has the potential to exceed the blackbody limit by several orders of magnitude,offering significant opportunities for energy harvesting.In this study,we have examined the NFRHT between two borophene sheets through the calculation of heat transfer coefficient(HTC).Due to the tunneling of evanescent waves,borophene sheet allows for enhanced heat flux and adjustable NFRHT by varying its electron density and electron relaxation time.Additionally,the near field coupling is further examined when the borophene is deposited on dielectric or lossy substrates.The maximum HTC is closely related to the real part of the dielectric substrate.As a case study,the HTCs on the lossy substrate of MoO_(3),ZnSe,and SiC are calculated for comparisons.Our results indicate that MoO_(3)is the optimal substrate to get the enhanced energy transfer coefficient.It results in a remarkable value of 1737 times higher than the blackbody limit owing to the enhanced photon tunneling probability.Thus,our study reveals the effect of substrate on the HTC between borophene sheets and provides a theoretical guidance for the design of near-field thermal radiation devices. 展开更多
关键词 near-field radiative heat transfer borophene lossy substrate heat transfer coefficient
在线阅读 下载PDF
Enhanced resonance frequency in Co2FeAl thin film with different thicknesses grown on flexible graphene substrate
6
作者 周偲 袁少康 +8 位作者 朱登玉 白宇明 王韬 刘福福 潘禄禄 冯存芳 张博涵 何大平 汪胜祥 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期618-622,共5页
The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with un... The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment. 展开更多
关键词 enhanced resonance frequency magnetic resonance field flexible graphene substrate
在线阅读 下载PDF
Facile SERS screening of melamine in bovine milk with 2D printed AgNPs/glass fabric filter paper as the flexible substrate
7
作者 Shiyao Wang Yanan Zhao +1 位作者 Xiao Wei Yisheng Chen 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2595-2600,共6页
Melamine is one of the most frequently detected adulterants in dairy products.The current study proposes a surface-enhanced Raman spectroscopy(SERS)-based analytical tool for fast and reliable screening of melamine in... Melamine is one of the most frequently detected adulterants in dairy products.The current study proposes a surface-enhanced Raman spectroscopy(SERS)-based analytical tool for fast and reliable screening of melamine in bovine milk.A hand-held Raman spectrometer was used in conjunction with a substrate composed of silver nanoparticles(AgNPs)that was 2D printed onto glass fiber(GF)filter paper.Under optimized conditions,a sensitive and fingerprint-like signal at 674 cm^(-1) was obtained.The AgNPs/GF substrate exhibited high sensitivity to melamine in milk down to 1.9498×10^(-5)mg/mL,which is well below the USA and EU safety limits(2.5×10^(-3)mg/mL).Remarkably,the proposed technology was also highly reproducible,showing spot-to-spot and block-to-block variations below 3.3%and 4.9%at 674 cm^(-1) in Raman intensity,respectively.The characteristic peak intensity and concentration of melamine showed an acceptable linear relationship(R^(2)=0.9909)within the range of 0.0001-1 mg/mL.Overall,the method established in this study can provide an efficient and effective method for the quantitative target screening and detection of melamine in dairy products. 展开更多
关键词 2D print MELAMINE MILK Surface-enhanced Raman spectroscopy(SERS) flexible substrate
在线阅读 下载PDF
Active tuning of anisotropic phonon polaritons in natural van der Waals crystals with negative permittivity substrates and its application in energy transport
8
作者 Shuo Chen Xiaohu Wu Ceji Fu 《Opto-Electronic Science》 2024年第6期1-19,共19页
Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,includ... Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices. 展开更多
关键词 anisotropic phonon polaritons forbidden direction substrate with a negative permittivity near-field energy transport
在线阅读 下载PDF
Improving InGaN-LED performance by optimizing the patterned sapphire substrate shape 被引量:4
9
作者 黄小辉 刘建平 +3 位作者 范亚明 孔俊杰 杨辉 王怀兵 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期365-370,共6页
The epitaxial growths of GaN films and GaN-based LEDs on various patterned sapphire substrates (PSSes) with different values of fill factor (f) and slanted angle (0) are investigated in detail. The threading dis... The epitaxial growths of GaN films and GaN-based LEDs on various patterned sapphire substrates (PSSes) with different values of fill factor (f) and slanted angle (0) are investigated in detail. The threading dislocation (TD) density is lower in the film grown on the PSS with a smaller fill factor, resulting in a higher internal quantum efficiency (IQE). Also the ability of the LED to withstand the electrostatic discharge (ESD) increases as the fill factor decreases. The illumination output power of the LED is affected by both 0 and f. It is found that the illumination output power of the LED grown on the PSS with a lower production of tan 0 and f is higher than that with a higher production of tan 0 and f. 展开更多
关键词 GAN Patterned sapphire substrate light emitting diode
在线阅读 下载PDF
Studies of diamond-like carbon (DLC) films deposited on stainless steel substrate with Si/SiC intermediate layers 被引量:3
10
作者 王静 刘贵昌 +2 位作者 王立达 邓新绿 徐军 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第8期3108-3114,共7页
In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwa... In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapour deposition (MW-ECRPECVD) techniques. The influence of substrate negative self-bias voltage and Si target power on the structure and nano-mechanical behaviour of the DLC films were investigated by Raman spectroscopy, nano-indentation, and the film structural morphology by atomic force microscopy (AFM). With the increase of deposition bias voltage, the G band shifted to higher wave-number and the integrated intensity ratio ID/IG increased. We considered these as evidences for the development of graphitization in the films. As the substrate negative self-bias voltage increased, particle bombardment function was enhanced and the sp^3-bond carbon density reducing, resulted in the peak values of hardness (H) and elastic modulus (E). Silicon addition promoted the formation of sp^3 bonding and reduced the hardness. The incorporated Si atoms substituted sp^2- bond carbon atoms in ring structures, which promoted the formation of sp^3-bond. The structural transition from C-C to C-Si bonds resulted in relaxation of the residual stress which led to the decrease of internal stress and hardness. The results of AFM indicated that the films was dense and homogeneous, the roughness of the films was decreased due to the increase of substrate negative self-bias voltage and the Si target power. 展开更多
关键词 diamond-like carbon (DLC) stainless steel substrate intermediate layers
在线阅读 下载PDF
The influence of AlN/GaN superlattice intermediate layer on the properties of GaN grown on Si(111) substrates 被引量:2
11
作者 刘喆 王晓亮 +3 位作者 王军喜 胡国新 郭伦春 李晋闽 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第5期1467-1471,共5页
AlN/GaN superlattice buffer is inserted between GaN epitaxiai layer and Si substrate before epitaxiai growth of GaN layer. High-quality and crack-free GaN epitaxiai layers can be obtained by inserting AlN/GaN superlat... AlN/GaN superlattice buffer is inserted between GaN epitaxiai layer and Si substrate before epitaxiai growth of GaN layer. High-quality and crack-free GaN epitaxiai layers can be obtained by inserting AlN/GaN superlattice buffer layer. The influence of AlN/GaN superlattice buffer layer on the properties of GaN films are investigated in this paper. One of the important roles of the superlattice is to release tensile strain between Si substrate and epilayer. Raman spectra show a substantial decrease of in-plane tensile strain in GaN layers by using AlN/GaN superlattice buffer layer. Moreover, TEM cross-sectional images show that the densities of both screw and edge dislocations are significantly reduced. The GaN films grown on Si with the superlattice buffer also have better surface morphology and optical properties. 展开更多
关键词 GAN Si substrate metalorganic chemical vapour deposition superlattice buffer
在线阅读 下载PDF
The modulation effect of substrate doping on multi-node charge collection and single-event transient propagation in 90-nm bulk complementary metal-oxide semiconductor technology 被引量:2
12
作者 秦军瑞 陈书明 +3 位作者 刘必慰 刘征 梁斌 杜延康 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期517-524,共8页
Variation of substrate background doping will affect the charge collection of active and passive MOSFETs in complementary metal-oxide semiconductor (CMOS) technologies, which are significant for charge sharing, thus... Variation of substrate background doping will affect the charge collection of active and passive MOSFETs in complementary metal-oxide semiconductor (CMOS) technologies, which are significant for charge sharing, thus affecting the propagated single event transient pulsewidths in circuits. The trends of charge collected by the drain of a positive channel metal-oxide semiconductor (PMOS) and an N metal-oxide semiconductor (NMOS) are opposite as the substrate doping increases. The PMOS source will inject carriers after strike and the amount of charge injected will irlcrease as the substrate doping increases, whereas the source of the NMOS will mainly collect carriers and the source of the NMOS can also inject electrons when the substrate doping is light enough. Additionally, it indicates that substrate doping mainly affects the bipolar amplification component of a single-event transient current, and has little effect on the drift and diffusion. The change in substrate doping has a much greater effect on PMOS than on NMOS. 展开更多
关键词 substrate doping charge collection single event transient propagation bipolar amplification
在线阅读 下载PDF
The effect of single AlGaN interlayer on the structural properties of GaN epilayers grown on Si (111) substrates 被引量:2
13
作者 吴玉新 朱建军 +7 位作者 赵德刚 刘宗顺 江德生 张书明 王玉田 王辉 陈贵锋 杨辉 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4413-4417,共5页
High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single A1GaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical va... High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single A1GaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical vapor deposition. This paper investigates the effect of AlCaN interlayer on the structural properties of the resulting CaN epilayer. It confirms from the optical microscopy and Raman scattering spectroscopy that the AIGaN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer and preventing the formation of cracks. X-ray diffraction and transmission electron microscopy analysis reveal that a significant reduction in both screw and edge threading dislocations is achieved in GaN epilayer by the insertion of AlGaN interlayer. The process of threading dislocation reduction in both AlGaN interlayer and GaN epilayer is demonstrated. 展开更多
关键词 GAN Si (111) substrate metalorganic chemical vapor deposition AlGaN interlayer
在线阅读 下载PDF
Influence of AlN buffer layer thickness on structural properties of GaN epilayer grown on Si(111) substrate with AlGaN interlayer 被引量:2
14
作者 吴玉新 朱建军 +7 位作者 陈贵锋 张书明 江德生 刘宗顺 赵德刚 王辉 王玉田 杨辉 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第3期407-411,共5页
We present the growth of CaN epilayer on Si (111) substrate with a single A1GaN interlayer sandwiched between the GaN epilayer and A1N buffer layer by using the metalorganic chemical vapour deposition. The influence... We present the growth of CaN epilayer on Si (111) substrate with a single A1GaN interlayer sandwiched between the GaN epilayer and A1N buffer layer by using the metalorganic chemical vapour deposition. The influence of the AlN buffer layer thickness on structural properties of the GaN epilayer has been investigated by scanning electron microscopy, atomic force microscopy, optical microscopy and high-resolution x-ray diffraction. It is found that an A1N buffer layer with the appropriate thickness plays an important role in increasing compressive strain and improving crystal quality during the growth of AlGaN interlayer, which can introduce a more compressive strain into the subsequent grown GaN layer, and reduce the crack density and threading dislocation density in GaN film. 展开更多
关键词 GAN Si (111) substrate metalorganic chemical vapour deposition AIN bufferlayer AlGaN interlayer
在线阅读 下载PDF
Spectroscopic and scanning probe analysis on large-area epitaxial graphene grown under pressure of 4 mbar on 4H-SiC(0001)substrates 被引量:1
15
作者 王党朝 张玉明 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期573-578,共6页
We produced epitaxial graphene under a moderate pressure of 4 mbar (about 400 Pa) at temperature 1600 ℃. Raman spectroscopy and optical microscopy were used to confirm that epitaxial graphene has taken shape contin... We produced epitaxial graphene under a moderate pressure of 4 mbar (about 400 Pa) at temperature 1600 ℃. Raman spectroscopy and optical microscopy were used to confirm that epitaxial graphene has taken shape continually with slight thickness variations and regularly with a centimeter order of magnitude on 4H-SiC (0001) substrates. Then using X-ray photoelectron spectroscopy and Auger electron spectroscopy, we analyzed the chemical compositions and estimated the layer number of epitaxial graphene. Finally, an atomic force microscope and a scanning force microscope were used to characterize the morphological structure. Our results showed that under 4-mbar pressure, epitaxial graphene could be produced on a SiC substrate with a large area, uniform thickness but a limited morphological property. We hope our work will be of benefit to understanding the formation process of epitaxial graphene on SiC substrate in detail. 展开更多
关键词 SiC substrate GRAPHENE epitaxial graphene
在线阅读 下载PDF
Simultaneous Determination of Trace Lead and Chromium in Water Using Laser-Induced Breakdown Spectroscopy and Paper Substrate 被引量:1
16
作者 於有利 周卫东 +2 位作者 钱慧国 苏雪娇 任可 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第7期683-687,共5页
Toxic metals such as lead and chromium in aqueous solutions have been analyzed simultaneously by laser-induced breakdown spectroscopy(LIBS), in which the ordinary printing paper is used as a liquid absorber which wa... Toxic metals such as lead and chromium in aqueous solutions have been analyzed simultaneously by laser-induced breakdown spectroscopy(LIBS), in which the ordinary printing paper is used as a liquid absorber which was immerged into Pb(NO3)2and Cr(NO3)3aqueous solution to enrich the heavy metals. This method overcomes the drawbacks of splashing and low sensitivity in ordinary LIBS analysis of water, in which a laser beam is directly focused on a liquid surface. A good signal intensity and reproducibility has been demonstrated. The Pb 405.78 nm and Cr 427.48 nm spectral lines are used as the analytical lines. The variation of line intensity with immersion time was investigated. The calibration curve for quantitative measurement of Pb and Cr in water was established, and the detection limits are 0.033 mg/L and 0.026 mg/L respectively,which is about 2-3 orders of magnitude better than that in the ordinary LIBS analysis of heavy metal in solution. 展开更多
关键词 LIBS SOLUTION quantitative analysis paper substrate
在线阅读 下载PDF
A comparative study of YBa_2Cu_3O_(7-δ)/YSZ bilayer films deposited on silicon-on-insulator substrates with and without HF pretreatment 被引量:1
17
作者 王萍 李洁 +4 位作者 陈莺飞 李绍 王佳 解廷月 郑东宁 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第4期1679-1683,共5页
Highly epitaxial YBa2Cu3O7-δ (YBCO) and yttria-stabilized zirconia (YSZ) bilayer thin films have been deposited on silicon-on-insulator (SOI) substrates by using in situ pulsed laser deposition (PLD) techniqu... Highly epitaxial YBa2Cu3O7-δ (YBCO) and yttria-stabilized zirconia (YSZ) bilayer thin films have been deposited on silicon-on-insulator (SOI) substrates by using in situ pulsed laser deposition (PLD) technique. In the experiment, the native amorphous SiO2 layers on some of the SOI substrates are removed by dipping them in a 10% HF solution for 15 s. Comparing several qualities of films grown on substrates with or without HF pretreatment, such as thin film crystallinity, general surface roughness, temperature dependence of resistance, surface morphology, as well as average crack spacing and crack width, naturally leads to the conclusion that preserving the native SiO2 layer on the surface of the SOI substrate can not only simplify the experimental process but can also achieve fairly high quality YSZ and YBCO thin films. 展开更多
关键词 pulsed laser deposition thin film PRETREATMENT SOI substrate
在线阅读 下载PDF
Monolithic semi-polar(1■01) InGaN/GaN near white light-emitting diodes on micro-striped Si(100) substrate 被引量:1
18
作者 Qi Wang Guo-Dong Yuan +5 位作者 Wen-Qiang Liu Shuai Zhao Lu Zhang Zhi-Qiang Liu Jun-Xi Wang Jin-Min Li 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第8期349-354,共6页
The epitaxial growth of novel GaN-based light-emitting diode(LED) on Si(100) substrate has proved challenging.Here in this work, we investigate a monolithic phosphor-free semi-polar InGaN/GaN near white light-emitting... The epitaxial growth of novel GaN-based light-emitting diode(LED) on Si(100) substrate has proved challenging.Here in this work, we investigate a monolithic phosphor-free semi-polar InGaN/GaN near white light-emitting diode, which is formed on a micro-striped Si(100) substrate by metal organic chemical vapor deposition. By controlling the size of micro-stripe, InGaN/GaN multiple quantum wells(MQWs) with different well widths are grown on semi-polar(1■01)planes. Besides, indium-rich quantum dots are observed in InGaN wells by transmission electron microscopy, which is caused by indium phase separation. Due to the different widths of MQWs and indium phase separation, the indium content changes from the center to the side of the micro-stripe. Various indium content provides the wideband emission. This unique property allows the semipolar InGaN/GaN MQWs to emit wideband light, leading to the near white light emission. 展开更多
关键词 INGAN/GAN MQWs NEAR white LIGHT-EMITTING diodes Si(100)substrate
在线阅读 下载PDF
Bioinspired Multiscale Wrinkling Patterns on Curved Substrates:An Overview 被引量:7
19
作者 Yinlong Tan Biru Hu +2 位作者 Jia Song Zengyong Chu Wenjian Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第8期130-171,共42页
The surface wrinkling of biological tissues is ubiquitous in nature.Accumulating evidence suggests that the mechanical force plays a significant role in shaping the biological morphologies.Controlled wrinkling has bee... The surface wrinkling of biological tissues is ubiquitous in nature.Accumulating evidence suggests that the mechanical force plays a significant role in shaping the biological morphologies.Controlled wrinkling has been demonstrated to be able to spontaneously form rich multiscale patterns,on either planar or curved surfaces.The surface wrinkling on planar substrates has been investigated thoroughly during the past decades.However,most wrinkling morphologies in nature are based on the curved biological surfaces and the research of controllable patterning on curved substrates still remains weak.The study of wrinkling on curved substrates is critical for understanding the biological growth,developing threedimensional(3D)or four-dimensional(4D)fabrication techniques,and creating novel topographic patterns.In this review,fundamental wrinkling mechanics and recent advances in both fabrications and applications of the wrinkling patterns on curved substrates are summarized.The mechanics behind the wrinkles is compared between the planar and the curved cases.Beyond the film thickness,modulus ratio,and mismatch strain,the substrate curvature is one more significant parameter controlling the surface wrinkling.Curved substrates can be both solid and hollow with various 3D geometries across multiple length scales.Up to date,the wrinkling morphologies on solid/hollow core-shell spheres and cylinders have been simulated and selectively produced.Emerging applications of the curved topographic patterns have been found in smart wetting surfaces,cell culture interfaces,healthcare materials,and actuators,which may accelerate the development of artificial organs,stimuli-responsive devices,and micro/nano fabrications with higher dimensions. 展开更多
关键词 Surface instability Wrinkling patterns substrate curvature Micro/nano fabrications Low-dimensional materials
在线阅读 下载PDF
A comparison of the field emission characteristics of vertically aligned graphene sheets grown on different SiC substrates 被引量:1
20
作者 陈莲莲 郭丽伟 +3 位作者 刘宇 李治林 黄郊 芦伟 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期567-570,共4页
The field emission (FE) properties of vertically aligned graphene sheets (VAGSs) grown on different SiC substrates are reported. The VAGSs grown on nonpolar SiC (10-10) substrate show an ordered alignment with t... The field emission (FE) properties of vertically aligned graphene sheets (VAGSs) grown on different SiC substrates are reported. The VAGSs grown on nonpolar SiC (10-10) substrate show an ordered alignment with the graphene basal plane-parallel to each other, and show better FE features, with a lower turn-on field and a larger field enhancement factor. The VAGSs grown on polar SiC (000-1 ) substrate reveal a random petaloid-shaped arrangement and stable current emission over 8 hours with a maximum emission current fluctuation of only 4%. The reasons behind the differing FE characteristics of the VAGSs on different SiC substrates are analyzed and discussed. 展开更多
关键词 field emission vertically aligned graphene sheets SiC substrate
在线阅读 下载PDF
上一页 1 2 239 下一页 到第
使用帮助 返回顶部