The effects of pre-compression and pre-aging on the age-hardening response and microstructure of Mg-9.8Sn3.0 Zn(wt.%)alloy have been investigated via hardness test and advanced electron microscopy.The alloy subjected ...The effects of pre-compression and pre-aging on the age-hardening response and microstructure of Mg-9.8Sn3.0 Zn(wt.%)alloy have been investigated via hardness test and advanced electron microscopy.The alloy subjected to both pre-compression and pre-aging exhibits the most refined and densest distribution of precipitates upon aging at 200℃,leading to the superior age-hardening performance observed in the alloy.Comparatively,the alloy that underwent only pre-aging displayed a greater number density of precipitates than its counterpart that was neither pre-compressed nor pre-aged when both were aged to their peak conditions at 200℃,indicating an enhanced age-hardening response in the pre-aged alloy.The precipitates in these three peak-aged alloys consist of Mg_(2)Sn and MgZn_(2)phases.The reason why the pre-aged alloy has a higher number density of precipitates than the directly aged alloy is that MgZn_(2)phase formed during pre-aging can serve as heterogeneous nucleation site for the formation of Mg_(2)Sn.The reason why the pre compression and pre-aged alloy has the highest number density of precipitates is that Mg_(3)Sn and MgZn_(2)phases formed during pre-aging,alongside lattice defects introduced during pre-compression,collectively act as effective heterogeneous nucleation sites for the formation of Mg_(2)Sn during the subsequent aging at 200℃.展开更多
A combined experimental and computational study was carried out to investigate ballistic performance of laterally preload compressed SiC tile against long rod impact. A 100 x 100 by 20 mm thick SiC tile was pushed int...A combined experimental and computational study was carried out to investigate ballistic performance of laterally preload compressed SiC tile against long rod impact. A 100 x 100 by 20 mm thick SiC tile was pushed into a 5 mm thick steel frame at high temperature of 430 ℃ so that after cool down to room temperature, the lateral preload compressive stress was developed in the SiC tiles. Depth of penetration tests of the SiC tiles with and without pre-stress were performed, where tungsten alloy long rods at a nominal velocity of 1240 m/s were launched to hit the SiC tiles backed by the steel blocks. Compared with the SiC tiles without any pre-stress, the pre-compressed SiC tiles were found to reduce significantly the residual penetration in the backing block. Simulations were carried out using the LS-dyna hydrocode,taking account of preload stress. The simulations showed that the lateral preload compression strengthened the intact SiC tiles and dwell occurred in the early penetration stage, eroding the striking long rod efficiently.展开更多
In order to solve the problem of pressure shock on the continuous rotary electro-hydraulic servo motor,the mathematical models of pressure gradient under the structure of pre-compressed chamber and U-shaped groove wer...In order to solve the problem of pressure shock on the continuous rotary electro-hydraulic servo motor,the mathematical models of pressure gradient under the structure of pre-compressed chamber and U-shaped groove were established.The optimal structure dimensions of the pre-compressed chamber and the U-shaped groove were determined.The fluid models were established by Solidworks under the four structures of triangular groove,triangular groove with pre-compression chamber,U-shaped groove and U-shaped groove with pre-compression chamber.Simulation analysis of depressurization process of fluid models was performed based on FLUENT.The pressure nephograms of different buffer structures were compared and analyzed,and the pressure change curves and pressure gradient change curves in the process of depressurization were obtained.The results show that the optimal edge length of the pre-compressed chamber of continuous rotary electro-hydraulic servo motor is 20 mm in the process of decompression.The pressure reduction effect is the best when the width of the U-shaped groove is 1.5 mm and the depth is 1.65 mm.The U-shaped groove structure with pre-compression chamber is more conducive to alleviate the pressure shock phenomenon of the motor compared with different combine buffer structures.展开更多
基金Project(52101167)supported by the National Natural Science Foundation of ChinaProject(2022JJ40604)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2022ZZTS0538)supported by the Postgraduate Research Innovation Project of Central South University,China。
文摘The effects of pre-compression and pre-aging on the age-hardening response and microstructure of Mg-9.8Sn3.0 Zn(wt.%)alloy have been investigated via hardness test and advanced electron microscopy.The alloy subjected to both pre-compression and pre-aging exhibits the most refined and densest distribution of precipitates upon aging at 200℃,leading to the superior age-hardening performance observed in the alloy.Comparatively,the alloy that underwent only pre-aging displayed a greater number density of precipitates than its counterpart that was neither pre-compressed nor pre-aged when both were aged to their peak conditions at 200℃,indicating an enhanced age-hardening response in the pre-aged alloy.The precipitates in these three peak-aged alloys consist of Mg_(2)Sn and MgZn_(2)phases.The reason why the pre-aged alloy has a higher number density of precipitates than the directly aged alloy is that MgZn_(2)phase formed during pre-aging can serve as heterogeneous nucleation site for the formation of Mg_(2)Sn.The reason why the pre compression and pre-aged alloy has the highest number density of precipitates is that Mg_(3)Sn and MgZn_(2)phases formed during pre-aging,alongside lattice defects introduced during pre-compression,collectively act as effective heterogeneous nucleation sites for the formation of Mg_(2)Sn during the subsequent aging at 200℃.
文摘A combined experimental and computational study was carried out to investigate ballistic performance of laterally preload compressed SiC tile against long rod impact. A 100 x 100 by 20 mm thick SiC tile was pushed into a 5 mm thick steel frame at high temperature of 430 ℃ so that after cool down to room temperature, the lateral preload compressive stress was developed in the SiC tiles. Depth of penetration tests of the SiC tiles with and without pre-stress were performed, where tungsten alloy long rods at a nominal velocity of 1240 m/s were launched to hit the SiC tiles backed by the steel blocks. Compared with the SiC tiles without any pre-stress, the pre-compressed SiC tiles were found to reduce significantly the residual penetration in the backing block. Simulations were carried out using the LS-dyna hydrocode,taking account of preload stress. The simulations showed that the lateral preload compression strengthened the intact SiC tiles and dwell occurred in the early penetration stage, eroding the striking long rod efficiently.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(201908230358)supported by the China Scholarship CouncilProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to solve the problem of pressure shock on the continuous rotary electro-hydraulic servo motor,the mathematical models of pressure gradient under the structure of pre-compressed chamber and U-shaped groove were established.The optimal structure dimensions of the pre-compressed chamber and the U-shaped groove were determined.The fluid models were established by Solidworks under the four structures of triangular groove,triangular groove with pre-compression chamber,U-shaped groove and U-shaped groove with pre-compression chamber.Simulation analysis of depressurization process of fluid models was performed based on FLUENT.The pressure nephograms of different buffer structures were compared and analyzed,and the pressure change curves and pressure gradient change curves in the process of depressurization were obtained.The results show that the optimal edge length of the pre-compressed chamber of continuous rotary electro-hydraulic servo motor is 20 mm in the process of decompression.The pressure reduction effect is the best when the width of the U-shaped groove is 1.5 mm and the depth is 1.65 mm.The U-shaped groove structure with pre-compression chamber is more conducive to alleviate the pressure shock phenomenon of the motor compared with different combine buffer structures.