Neurons in the pre-B6tzinger complex within the mammalian brain stem play important roles in the generation of respiratory rhythms. Experimental observations show that some neurons can exhibit novel mixed bursting act...Neurons in the pre-B6tzinger complex within the mammalian brain stem play important roles in the generation of respiratory rhythms. Experimental observations show that some neurons can exhibit novel mixed bursting activities. In this paper, based on a mathematical model proposed by Butera, we show how the mixed bursting activities depend on the potassium current in the coupled pre-Botzinger complex. Using fast-slow decomposition and bifurcation analysis, we investigate the dynamics of mixed bursting, as well as the mechanisms of transition between different mixed bursting patterns. We find that mixed bursting involves different bistability, and it is the transition state of two types of regular burstings.展开更多
An atmospheric-pressure dielectric barrier discharge (DBD) gas-liquid cold plasma was employed to synthesize Cu-doped TiO~ nanoparticles in an aqueous solution with the assistance of [C2MIM]BF4 ionic liquid (IL) a...An atmospheric-pressure dielectric barrier discharge (DBD) gas-liquid cold plasma was employed to synthesize Cu-doped TiO~ nanoparticles in an aqueous solution with the assistance of [C2MIM]BF4 ionic liquid (IL) and using air as the working gas. The influences of the discharge voltage, IL and the amount of copper nitrite were investigated. X-ray diffraction, N2 adsorption-desorption measurements and UV-Vis spectroscopy were adopted to characterize the samples. The results showed that the specific surface area of TiO2 was promoted with Cu-doping (from 57.6 m^2.g^-1 to 106.2 m^2.g^-1 with 3% Cu-doping), and the content of anatase was increased. Besides, the band gap energy of TiO~ with Cu-doping decreased according to the UV-Vis spec- troscopy test. The 3%Cu-IL-TiO2 samples showed the highest eificiency in degrading methylene blue (MB) dye solutions under simulated sunlight with an apparent rate constant of 0.0223 min-1, which was 1.2 times higher than that of non-doped samples. According to the characterization results, the reasons for the high photocatalytic activity were discussed.展开更多
动脉粥样硬化是心血管疾病重要的病理生理基础,延缓和防治动脉粥样硬化对于减少和降低心血管疾病的发病率及病死率具有重要意义。高密度脂蛋白(high density lipoprotein,HDL)通过参与介导胆固醇逆向转运(reverse cholesterol transport...动脉粥样硬化是心血管疾病重要的病理生理基础,延缓和防治动脉粥样硬化对于减少和降低心血管疾病的发病率及病死率具有重要意义。高密度脂蛋白(high density lipoprotein,HDL)通过参与介导胆固醇逆向转运(reverse cholesterol transport,RCT)在抗动脉粥样硬化的形成和进展中发挥了重要作用。Preβ-1高密度脂蛋白(prebeta-1 high density lipoprotein,Preβ-1HDL)作为HDL的一种亚类,是外周细胞移出胆固醇的最初接受体,直接参与了RCT的起始步骤,并在随后的胆固醇酯化及转运中起着重要作用。本文就Preβ-1HDL的结构、代谢及其与心血管疾病的关系作一简要综述。展开更多
The main objective of this work is to predict the mixing of two different miscible oils in a very long channel. The background to this problem relates to the mixing of heavy and light oil in a pipeline. As a first ste...The main objective of this work is to predict the mixing of two different miscible oils in a very long channel. The background to this problem relates to the mixing of heavy and light oil in a pipeline. As a first step, a 2D channel with an aspect ratio of 250 is considered. The batch-mixing of two miscible crude oils with different viscosities and densities is modeled using an unsteady laminar model and unsteady RANS model available in the commercial CFD solver ANSYSFluent. For a comparison, a LES model was used for a 3D version of the 2D channel. The distinguishing feature of this work is the Lagrangian coordinate system utilized to set no-slip wall boundary conditions. The global CFD model has been validated against classical analytical solutions. Excellent agreement has been achieved. Simulations were carried out for a Reynolds number of 6300(calculated using light oil properties) and a Schmidt number of 10~4. The results show that, in contrast to the unsteady RANS model, the LES and unsteady laminar models produce comparable mixing dynamics for two oils in the channel. Analysis of simulations also shows that, for a channel length of 100 m and a height of 0.4 m, the complete mixing of two oils across the channel has not been achieved. We showed that the mixing zone consists of the three different mixing sub-zones, which have been identified using the averaged mass fraction of the heavy oil along the flow direction. The first sub-zone corresponds to the main front propagation area with a length of several heights of the channel. The second and third sub-zones are characterized by so-called shear-flow-driven mixing due to the Kelvin–Helmholtz vortices occurring between oils in the axial direction. It was observed that the third sub-zone has a steeper mass fraction gradient of the heavy oil in the axial direction in comparison with the second sub-zone, which corresponds to the flow-averaged mass fraction of 0.5 for the heavy oil.展开更多
We report pulsed laser diode(LD)end-pumped acoustic Q-switched Tm:YAG laser,Tm:LuAG laser,and Tm:LuYAG laser and the physical properties and spectra of Tm:YAG,Tm:LuAG,and Tm:LuYAG are analyzed.The Tm:LuYAG laser is pu...We report pulsed laser diode(LD)end-pumped acoustic Q-switched Tm:YAG laser,Tm:LuAG laser,and Tm:LuYAG laser and the physical properties and spectra of Tm:YAG,Tm:LuAG,and Tm:LuYAG are analyzed.The Tm:LuYAG laser is pumped by 785-nm and 788-nm pulses separately,and is compared with Tm:YAG laser.Different output energy values and output wavelengths of Tm:LuAYG lasers pumped by LDs with different wavelengths are obtained and compared with each other.When the repetition frequency is 100 Hz,the pulsed Tm:YAG laser has single pulse energy of 15.9 mJ,pulse width of 126.7 ns,and the center wavelength of 2013.36 nm,and the pulsed Tm:LuAG laser possesses single pulse energy of 11.8 mJ,pulse width of 252.4 ns,and the center wavelength of 2023.65 nm,and the pulsed Tm:LuYAG laser output energy values are 12.32 mJ and 12.25 mJ with the slope efficiencies of 12.5%and 11.85%,the center wavelengths of 2017.89 nm and 2027.11 nm,respectively,while the pump sources are 785-nm and 788-nm pulsed LDs,respectively.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11472009)Construction Plan for Innovative Research Team of North China University of Technology(Grant No.XN018010)Scientific Research for Undergraduate of North China University of Technology
文摘Neurons in the pre-B6tzinger complex within the mammalian brain stem play important roles in the generation of respiratory rhythms. Experimental observations show that some neurons can exhibit novel mixed bursting activities. In this paper, based on a mathematical model proposed by Butera, we show how the mixed bursting activities depend on the potassium current in the coupled pre-Botzinger complex. Using fast-slow decomposition and bifurcation analysis, we investigate the dynamics of mixed bursting, as well as the mechanisms of transition between different mixed bursting patterns. We find that mixed bursting involves different bistability, and it is the transition state of two types of regular burstings.
基金supported by National Natural Science Foundation of China(Nos.21173028,11505019)the Science and Technology Research Project of Liaoning Provincial Education Department(No.L2013464)+2 种基金the Scientific Research Foundation for the Doctor of Liaoning Province(No.20131004)the Program for Liaoning Excellent Talents in University(No.LR2012042)Dalian Jinzhou New District Science and Technology Plan Project(No.KJCX-ZTPY-2014-0001)
文摘An atmospheric-pressure dielectric barrier discharge (DBD) gas-liquid cold plasma was employed to synthesize Cu-doped TiO~ nanoparticles in an aqueous solution with the assistance of [C2MIM]BF4 ionic liquid (IL) and using air as the working gas. The influences of the discharge voltage, IL and the amount of copper nitrite were investigated. X-ray diffraction, N2 adsorption-desorption measurements and UV-Vis spectroscopy were adopted to characterize the samples. The results showed that the specific surface area of TiO2 was promoted with Cu-doping (from 57.6 m^2.g^-1 to 106.2 m^2.g^-1 with 3% Cu-doping), and the content of anatase was increased. Besides, the band gap energy of TiO~ with Cu-doping decreased according to the UV-Vis spec- troscopy test. The 3%Cu-IL-TiO2 samples showed the highest eificiency in degrading methylene blue (MB) dye solutions under simulated sunlight with an apparent rate constant of 0.0223 min-1, which was 1.2 times higher than that of non-doped samples. According to the characterization results, the reasons for the high photocatalytic activity were discussed.
文摘动脉粥样硬化是心血管疾病重要的病理生理基础,延缓和防治动脉粥样硬化对于减少和降低心血管疾病的发病率及病死率具有重要意义。高密度脂蛋白(high density lipoprotein,HDL)通过参与介导胆固醇逆向转运(reverse cholesterol transport,RCT)在抗动脉粥样硬化的形成和进展中发挥了重要作用。Preβ-1高密度脂蛋白(prebeta-1 high density lipoprotein,Preβ-1HDL)作为HDL的一种亚类,是外周细胞移出胆固醇的最初接受体,直接参与了RCT的起始步骤,并在随后的胆固醇酯化及转运中起着重要作用。本文就Preβ-1HDL的结构、代谢及其与心血管疾病的关系作一简要综述。
文摘The main objective of this work is to predict the mixing of two different miscible oils in a very long channel. The background to this problem relates to the mixing of heavy and light oil in a pipeline. As a first step, a 2D channel with an aspect ratio of 250 is considered. The batch-mixing of two miscible crude oils with different viscosities and densities is modeled using an unsteady laminar model and unsteady RANS model available in the commercial CFD solver ANSYSFluent. For a comparison, a LES model was used for a 3D version of the 2D channel. The distinguishing feature of this work is the Lagrangian coordinate system utilized to set no-slip wall boundary conditions. The global CFD model has been validated against classical analytical solutions. Excellent agreement has been achieved. Simulations were carried out for a Reynolds number of 6300(calculated using light oil properties) and a Schmidt number of 10~4. The results show that, in contrast to the unsteady RANS model, the LES and unsteady laminar models produce comparable mixing dynamics for two oils in the channel. Analysis of simulations also shows that, for a channel length of 100 m and a height of 0.4 m, the complete mixing of two oils across the channel has not been achieved. We showed that the mixing zone consists of the three different mixing sub-zones, which have been identified using the averaged mass fraction of the heavy oil along the flow direction. The first sub-zone corresponds to the main front propagation area with a length of several heights of the channel. The second and third sub-zones are characterized by so-called shear-flow-driven mixing due to the Kelvin–Helmholtz vortices occurring between oils in the axial direction. It was observed that the third sub-zone has a steeper mass fraction gradient of the heavy oil in the axial direction in comparison with the second sub-zone, which corresponds to the flow-averaged mass fraction of 0.5 for the heavy oil.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974060 and U19A2077).
文摘We report pulsed laser diode(LD)end-pumped acoustic Q-switched Tm:YAG laser,Tm:LuAG laser,and Tm:LuYAG laser and the physical properties and spectra of Tm:YAG,Tm:LuAG,and Tm:LuYAG are analyzed.The Tm:LuYAG laser is pumped by 785-nm and 788-nm pulses separately,and is compared with Tm:YAG laser.Different output energy values and output wavelengths of Tm:LuAYG lasers pumped by LDs with different wavelengths are obtained and compared with each other.When the repetition frequency is 100 Hz,the pulsed Tm:YAG laser has single pulse energy of 15.9 mJ,pulse width of 126.7 ns,and the center wavelength of 2013.36 nm,and the pulsed Tm:LuAG laser possesses single pulse energy of 11.8 mJ,pulse width of 252.4 ns,and the center wavelength of 2023.65 nm,and the pulsed Tm:LuYAG laser output energy values are 12.32 mJ and 12.25 mJ with the slope efficiencies of 12.5%and 11.85%,the center wavelengths of 2017.89 nm and 2027.11 nm,respectively,while the pump sources are 785-nm and 788-nm pulsed LDs,respectively.