期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Optimizing the power conversion processes in diluted donor/acceptor heterojunctions towards 19.4%efficiency all-polymer solar cells
1
作者 Liang Wang Chen Chen +11 位作者 Zirui Gan Chenhao Liu Chuanhang Guo Weiyi Xia Wei Sun Jingchao Cheng Yuandong Sun Jing Zhou Zexin Chen Dan Liu Wei Li Tao Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期345-350,共6页
All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structure... All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structures within the photoactive film,inefficient charge generation and carrier transport are observed which lead to inferior photovoltaic performance compared to smaller molecular acceptor-based photovoltaics.Here,by diluting PM6 with a cutting-edge polymeric acceptor PY-IT and diluting PY-IT with PM6 or D18,donor-dominating or acceptor-dominating heterojunctions were prepared.Synchrotron X-ray and multiple spectrometer techniques reveal that the diluted heterojunctions receive increased structural order,translating to enhanced carrier mobility,improved exciton diffusion length,and suppressed non-radiative recombination loss during the power conversion.As the results,the corresponding PM6+1%PY-IT/PY-IT+1%D18 and PM6+1%PY-IT/PY-IT+1%PM6 devices fabricated by layer-by-layer deposition received superior power conversion efficiency(PCE)of 19.4%and 18.8%respectively,along with enhanced operational lifetimes in air,outperforming the PCE of 17.5%in the PM6/PY-IT reference device. 展开更多
关键词 All-polymer solar cells power conversion efficiency Structural order Charge generation
在线阅读 下载PDF
Highly Efficient Power Conversion from Salinity Gradients with Ion-Selective Polymeric Nanopores
2
作者 凌云 闫东晓 +4 位作者 王鹏飞 汪茂 文琪 刘峰 王宇钢 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期91-94,共4页
A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion e... A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion efficiency and power density are often limited due to the challenge in reliably controlling the size of the nanopores with the conventional chemical etching method. Here we report that without chemical etching, polyimide (PI) membranes irradiated with GeV heavy ions have negatively charged nanopores, showing nearly perfect selectivity for cations over anions, and they can generate electrical power from salinity gradients. We further demonstrate that the power generation efficiency of the PI membrane approaches the theoretical limit, and the maximum power density reaches 130m W/m2 with a modified etching method, outperforming the previous energy conversion device that was made of polymeric nanopore membranes. 展开更多
关键词 of on in from with Highly Efficient power conversion from Salinity Gradients with Ion-Selective Polymeric Nanopores
在线阅读 下载PDF
Optimal oxide-aperture for improving the power conversion efficiency of VCSEL arrays
3
作者 王文娟 李冲 +4 位作者 周弘毅 武华 栾信信 史磊 郭霞 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期181-185,共5页
The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 ... The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 μm,19 μm,26 μm,29 μm,36 μm,39 μm,and 46 urn are fabricated and characterized,respectively.The maximum power conversion efficiencies increase rapidly with the augment of oxide-aperture at the beginning and then decrease slowly.A maximum value of27.91%at an oxide-aperture of 18.6 μm is achieved by simulation.The experimental data are well consistent with the simulation results,which are analyzed by utilizing an empirical model. 展开更多
关键词 vertical-cavity surface-emitting laser arrays power conversion efficiency oxide-aperture
在线阅读 下载PDF
Dual‑Donor‑Induced Crystallinity Modulation Enables 19.23% Efficiency Organic Solar Cells
4
作者 Anhai Liang Yuqing Sun +9 位作者 Sein Chung Jiyeong Shin Kangbo Sun Chaofeng Zhu Jingjing Zhao Zhenmin Zhao Yufei Zhong Guangye Zhang Kilwon Cho Zhipeng Kan 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期376-388,共13页
Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challengin... Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challenging.Herein, wide bandgap polymer donor PTzBI-dF is demonstrated as an effectivemodulator for enhancing the crystallinity of the bulk heterojunction active layerscomposed of D18 derivatives blended with Y6, leading to dense and orderedmolecular packings, and thus, improves photoluminescence quenching properties.As a result, the photovoltaic devices exhibit reduced trap-assisted charge recombinationlosses, achieving an optimized power conversion efficiency of over 19%.Besides the efficiency enhancement, the devices comprised of PTzBI-dF as athird component simultaneously attain decreased current leakage, improved chargecarrier mobilities, and suppressed bimolecular charge recombination, leading toreduced energy losses. The advanced crystalline structures induced by PTzBI-dFand its characteristics, such as well-aligned energy level, and complementaryabsorption spectra, are ascribed to the promising performance improvements.Our findings suggest that donor phase engineering is a feasible approach to tuning the molecular packings in the active layer, providingguidelines for designing effective morphology modulators for high-performance organic solar cells. 展开更多
关键词 Trap-assisted charge recombination PHOTOLUMINESCENCE MISCIBILITY Current leakage power conversion efficiency
在线阅读 下载PDF
Layered-stacking of titania films for solar energy conversion:Toward tailored optical,electronic and photovoltaic performance 被引量:1
5
作者 Wu-Qiang Wu Jin-Feng Liao Dai-Bin Kuang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期690-702,共13页
Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conver... Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conversion application. Layered-stacking TiO2 film such as double-layer, tri-layer, quadrupleor quintuplicate-layer, is highly desirable to the design of high-performance semiconductor material photoanodes and the development of advanced photovoltaic devices. In this minireview, we will summarize the recent progress and achievements on proof-of-concept of layered-stacking TiO2 films(LTFs) for solar cells with emphasis on the tailored properties and synergistic functionalization of LTFs, such as optimized sensitizer adsorption, broadened light confinement as well as facilitated electron transport characteristics.Various demonstrations of LTFs photovoltaic systems provide lots of possibilities and flexibilities for more efficient solar energy utilization that a wide variety of TiO2 with distinguished morphologies can be integrated into differently structured photoanodes with synergistic and complementary advantages. This key structure engineering technology will also pave the way for the development of next generation state-ofthe-art electronics and optoelectronics. Finally, from our point of view, we conclude the future research interest and efforts for constructing more efficient LTFs as photoelectrode, which will be highly warranted to advance the solar energy conversion process. 展开更多
关键词 TiO2 Charge transport Light scattering power conversion efficiency Solar cells
在线阅读 下载PDF
Analysis of Power Model for Linear Plasma Device
6
作者 张卫卫 邓柏权 +6 位作者 左浩毅 曾宪俊 曹小岗 薛晓艳 欧巍 曹智 芶富均 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第8期844-847,共4页
A single cathode linear plasma device has been designed and constructed to investigate the interactions between plasma and materials at the Sichuan University. In order to further investigate the Ohmic power of the de... A single cathode linear plasma device has been designed and constructed to investigate the interactions between plasma and materials at the Sichuan University. In order to further investigate the Ohmic power of the device, the output heat load on the specimen and electric potential difference(between cathode and anode) have been tested under different discharge currents. This special power distribution in the radial direction of the plasma discharge channel has also been discussed and described by some improved integral equations in this paper;it can be further simplified as P ∝ α^(-2) in one-parameter. Besides, we have measured the power loss of the channel under different discharge currents by the calorimetric method, calculated the effective power of the device and evaluated the performances of the plasma device through the power efficiency analysis. 展开更多
关键词 PLASMA RESISTIVITY power conversion efficiency
在线阅读 下载PDF
Enhancing the crystallinity and stability of perovskite solar cells with 4-tert-butylpyridine induction for efficiency exceeding 24%
7
作者 You Liu Lishuang Zheng +15 位作者 Kuanxiang Zhang Kun Xu Weicheng Xie Jue Zhang Yulu Tian Tianyuan Liu Hanzhong Xu Ruoming Ma Wei Huang Jiahui Chen Jusheng Bao Chen Chen Yongsheng Zhou Xuchun Wang Junming Chen Jungan Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期1-7,I0001,共8页
Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such ... Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such as hysteresis effects and stability issues.In this study,we introduced a novel approach to improve film crystallization by leveraging 4-tert-butylpyridine(TBP)molecules,thereby enhancing the performance and stability of PSCs.Our findings demonstrate the effective removal of PbI_(2)from the perovskite surface through strong coordination with TBP molecules.Additionally,by carefully adjusting the concentration of the TBP solution,we achieved enhanced film crystallinity without disrupting the perovskite structure.The TBP-treated perovskite films exhibit a low defect density,improved crystallinity,and improved carrier lifetime.As a result,the PSCs manufactured with TBP treatment achieve power conversion efficiency(PCE)exceeding 24%.Moreover,we obtained the PCE of 21.39%for the 12.25 cm^(2)module. 展开更多
关键词 4-tert-butylpyridine Film crystallization Perovskite solar cells power conversion efficiency Stability improvement
在线阅读 下载PDF
Review of current progress in hole-transporting materials for perovskite solar cells 被引量:5
8
作者 Prerna Mahajan Bhavya Padha +5 位作者 Sonali Verma Vinay Gupta Ram Datt Wing Chung Tsoi Soumitra Satapathi Sandeep Arya 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期330-386,共57页
Recent advancements in perovskites’ application as a solar energy harvester have been astonishing. The power conversion efficiency(PCE) of perovskite solar cells(PSCs) is currently reaching parity(>25 percent), an... Recent advancements in perovskites’ application as a solar energy harvester have been astonishing. The power conversion efficiency(PCE) of perovskite solar cells(PSCs) is currently reaching parity(>25 percent), an accomplishment attained over past decades. PSCs are seen as perovskites sandwiched between an electron transporting material(ETM) and a hole transporting material(HTM). As a primary component of PSCs, HTM has been shown to have a considerable effect on solar energy harvesting, carrier extraction and transport, crystallization of perovskite, stability, and price. In PSCs, it is still necessary to use a HTM.While perovskites are capable of conducting holes, they are present in trace amounts, necessitating the use of an HTM layer for efficient charge extraction. In this review, we provide an understanding of the significant forms of HTM accessible(inorganic, polymeric and small molecule-based HTMs), to motivate further research and development of such materials. The identification of additional criteria suggests a significant challenge to high stability and affordability in PSC. 展开更多
关键词 Hole transporting material Perovskite solar cells power conversion efficiency STABILITY
在线阅读 下载PDF
Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications 被引量:4
9
作者 Jue Gong Peijun Guo +3 位作者 Savannah E.Benjamin P.Gregory Van Patten Richard D.Schaller Tao Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1017-1039,共23页
Perovskite solar cells (PSCs) based on methylammonium lead iodide (CH3NH3PbI3) have shown unprecedentedly outstanding performance in the recent years. Nevertheless, due to the weak interaction between polar CH3NH3... Perovskite solar cells (PSCs) based on methylammonium lead iodide (CH3NH3PbI3) have shown unprecedentedly outstanding performance in the recent years. Nevertheless, due to the weak interaction between polar CH3NH3+ (MA+) and inorganic PbI3 sublattices, CH3NH3PbI3 dramatically suffers from poor moisture stability, thermal decomposition and device hysteresis. As such, strong electrostatic interactions between cations and anionic frameworks are desired for synergistic improvements of the abovementioned issues. While replacements of I with Br and/or CI evidently widen optical bandgaps of perovskite materials, compositional modifications can solely be applied on cation components in order to preserve the broad absorption of solar spectrum. Herein, we review the current successful practices in achieving efficient, stable and minimally hysteretic PSCs with lead iodide perovskite systems that employ photoactive cesium lead iodide (CsPbI3), formamidinium lead iodide (HC(NH2)2PbI3, or FAPbI3), MA1-x y-zFAxCsyRbzPbI3 mixed-cation settings as well as two-dimensional butylammonium (C4H9NH3+, or BA+)/MA+, polymeric ammonium (PEI+)/MA+ co-cation layered structures. Fundamental aspects behind the stabilization of perovskite phases α-CsPbi3, α-FAPbI3, mixed-cation MA1-x-y-zFAxCsyRb2PbI3 and crystallographic alignment of (BA)2(MA)3Pb4I13 for effective light absorption and charge transport will be discussed. This review will contribute to the continuous development of photovoltaic technology based on PSCs. 展开更多
关键词 Solar energy conversion Perovskite solar cells power conversion efficiency Optical bandgaps Device hysteresis Metastabte phases
在线阅读 下载PDF
Predicting the device performance of the perovskite solar cells from the experimental parameters through machine learning of existing experimental results 被引量:3
10
作者 Yao Lu Dong Wei +8 位作者 Wu Liu Juan Meng Xiaomin Huo Yu Zhang Zhiqin Liang Bo Qiao Suling Zhao Dandan Song Zheng Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期200-208,I0006,共10页
The performance of the metal halide perovskite solar cells(PSCs)highly relies on the experimental parameters,including the fabrication processes and the compositions of the perovskites;tremendous experimental work has... The performance of the metal halide perovskite solar cells(PSCs)highly relies on the experimental parameters,including the fabrication processes and the compositions of the perovskites;tremendous experimental work has been done to optimize these factors.However,predicting the device performance of the PSCs from the fabrication parameters before experiments is still challenging.Herein,we bridge this gap by machine learning(ML)based on a dataset including 1072 devices from peer-reviewed publications.The optimized ML model accurately predicts the PCE from the experimental parameters with a root mean square error of 1.28%and a Pearson coefficientr of 0.768.Moreover,the factors governing the device performance are ranked by shapley additive explanations(SHAP),among which,A-site cation is crucial to getting highly efficient PSCs.Experiments and density functional theory calculations are employed to validate and help explain the predicting results by the ML model.Our work reveals the feasibility of ML in predicting the device performance from the experimental parameters before experiments,which enables the reverse experimental design toward highly efficient PSCs. 展开更多
关键词 Machine learning Feature engineering Perovskite solar cells power conversion efficiency
在线阅读 下载PDF
The roles of black phosphorus in performance enhancement of halide perovskite solar cells 被引量:2
11
作者 Damir Aidarkhanov Charles Surya Annie Ng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期672-683,共12页
Hybrid organic-inorganic perovskite solar cells(PSCs) are considered to be the most promising thirdgeneration photovoltaic(PV) technology with the most rapid rate of increase in the power conversion efficiency(PCE). T... Hybrid organic-inorganic perovskite solar cells(PSCs) are considered to be the most promising thirdgeneration photovoltaic(PV) technology with the most rapid rate of increase in the power conversion efficiency(PCE). To date, their PCE values are comparable to the established photovoltaic technologies such as crystalline silicon. Intensive research activities associated with PSCs have been being performed,since 2009, aiming to further boost the device performance in terms of efficiency and stability via different strategies in order to accelerate the progress of commercialization. The emerging 2 D black phosphorus(BP) is a novel class of semiconducting material owing to its unique characteristics, allowing them to become attractive materials for applications in a variety of optical and electronic devices, which have been comprehensively reviewed in the literature. However, comprehensive reviews focusing on the application of BP in PSCs are scarce in the community. This review discusses the research works with the incorporation of BP as a functional material in PSCs. The methodology as well as the effects of employing BP in different regions of PSCs are summarized. Further challenges and potential research directions are also highlighted. 展开更多
关键词 Perovskite solar cells Black phosphorus power conversion efficiency Stability Low dimensional materials
在线阅读 下载PDF
Novel polymer acceptors achieving 10.18% efficiency for all-polymer solar cells 被引量:2
12
作者 Shaorong Huang Feiyan Wu +3 位作者 Zuoji Liu Yongjie Cui Lie Chena Yiwang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期63-68,I0003,共7页
Polymer acceptors based on extended fused ring p skeleton has been proven to be promising candidates for all-polymer solar cells(all-PSCs), due to their remarkable improved light absorption than the traditional imide-... Polymer acceptors based on extended fused ring p skeleton has been proven to be promising candidates for all-polymer solar cells(all-PSCs), due to their remarkable improved light absorption than the traditional imide-based polymer acceptors. To expand structural diversity of the polymer acceptors, herein,two polymer acceptors PSF-IDIC and PSi-IDIC with extended fused ring p skeleton are developed by copolymerization of 2,20-((2 Z,20 Z)-((4,4,9,9-tetrahexadecyl-4,9-dihydro-s-indaceno [1,2-b:5,6-b']dithio phene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1 H-indene-2,1-diylidene))dimalononitrile(IDIC-C16) block with sulfur(S) and fluorine(F) functionalized benzodithiophene(BDT) unit and silicon(Si) atom functionalized BDT unit, respectively. Both polymer acceptors exhibit strong light absorption.The PSF-IDIC exhibits similar energy levels and slightly higher absorption coefficient relative to the PSi-IDIC. After blended with the donor polymer PM6, the functional atoms on the polymer acceptors show quite different effect on the device performance. Both of the acceptors deliver a notably high open circuit voltage(V_(OC)) of the devices, but PSi-IDIC achieves higher V OCthan PSF-IDIC. All-PSC based on PM6:PSi-IDIC attains a power conversion efficiency(PCE) of 8.29%, while PM6:PSF-IDIC-based device achieves a much higher PCE of 10.18%, which is one of the highest values for the all-PSCs reported so far. The superior device performance of PM6:PSF-IDIC is attributed to its higher exciton dissociation and charge transport, decreased charge recombination, and optimized morphology than PM6:PSi-IDIC counterpart. These results suggest that optimizing the functional atoms of the side chain provide an effective strategy to develop high performance polymer acceptors for all-PSCs. 展开更多
关键词 All-polymer solar cells Polymer acceptor Functional atoms power conversion efficiency
在线阅读 下载PDF
Heteroatom substitution-induced asymmetric A–D–A type non-fullerene acceptor for efficient organic solar cells 被引量:2
13
作者 Chao Lia Jiali Song +6 位作者 Yunhao Cai Guangchao Han Wenyu Zheng Yuanping Yi Hwa Sook Ryu Han Young Woo Yanming Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期144-150,I0006,共8页
Research on asymmetric A–D–A structured non-fullerene acceptors has lagged far behind the development of symmetric counterpart.In this contribution,by simply replacing one sulfur atom in indacenodithiophene unit wit... Research on asymmetric A–D–A structured non-fullerene acceptors has lagged far behind the development of symmetric counterpart.In this contribution,by simply replacing one sulfur atom in indacenodithiophene unit with a selenium atom,an asymmetric building block Se PT and a corresponding asymmetric non-fullerene acceptor Se PT-IN have been developed.Asymmetric Se PT-IN achieved a high efficiency of 10.20% in organic solar cells when blended with PBT1-C,much higher than that of symmetric TPT-IN counterpart(8.91%).Our results demonstrated an effective heteroatom substitution strategy to develop asymmetric A–D–A structured non-fullerene acceptors. 展开更多
关键词 Asymmetric non-fullerene acceptors Heteroatom substitution Organic solar cells power conversion efficiency
在线阅读 下载PDF
Machine learning enables intelligent screening of interface materials towards minimizing voltage losses for p-i-n type perovskite solar cells 被引量:2
14
作者 Wu Liu Ning Meng +9 位作者 Xiaomin Huo Yao Lu Yu Zhang Xiaofeng Huang Zhenqun Liang Suling Zhao Bo Qiao Zhiqin Liang Zheng Xu Dandan Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期128-137,I0005,共11页
Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. He... Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. Here, on the basis of the previous studies, we employ machine learning to map the relationship between the interface material and the device performance, leading to intelligently screening interface materials towards minimizing voltage losses in p-i-n type PSCs. To enhance the explainability of the machine learning models, molecular descriptors are used to represent the materials. Furthermore,experimental analysis with different characterization methods and device simulation based on the drift-diffusion physical model are conducted to get physical insights and validate the machine learning models. Accordingly, 3-thiophene ethylamine hydrochloride(Th EACl) is screened as an example, which enables remarkable improvements in VOCand PCE of the PSCs. Our work reveals the critical role of datadriven analysis in the high throughput screening of interface materials, which will significantly accelerate the exploration of new materials for high-efficiency PSCs. 展开更多
关键词 Perovskite solar cells Machine learning Interface materials power conversion efficiency
在线阅读 下载PDF
Formamidinium-incorporated Dion-Jacobson phase 2D perovskites for highly efficient and stable photovoltaics 被引量:1
15
作者 Sajjad Ahmad Wei Yu +5 位作者 Ruixue Lu Yang Liu Tonggang Jiu Shuping Pang Xin Guo Can Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期632-638,I0015,共8页
Dion-Jacobson phase two-dimensional(DJ 2D)perovskites,recently attracting considerable interests,exhibit excellent environmental stability and structural tunability,but their solar cells still offer unsatisfactory pow... Dion-Jacobson phase two-dimensional(DJ 2D)perovskites,recently attracting considerable interests,exhibit excellent environmental stability and structural tunability,but their solar cells still offer unsatisfactory power conversion efficiencies(PCEs).Herein,we develop DJ 2D perovskites employing formamidinium(FA+)as a ternary cation in the perovskite cages((PDA)(FA)x(MA)3-xPb4 I13,χ=0,0.15,0.3 and 0.6,PDA=1,3-propanediammonium)for highly efficient and stable perovskite solar cells(PSCs).We found that the DJ 2D perovskite with a 10%FA+fraction presents improved crystallinity,preferred vertical orientation,and longer charge carrier lifetime compared to that without FA+doping.As a result,the FAdoped DJ 2D PSCs exhibit a champion PCE of 14.74%with superior device stability.The unencapsulated devices sustain over 92%of its initial PCE after storage at a constant relative humidity(RH)of 65%for 6000 h,90%by heat at 85℃in air for 800 h,and 94%under 1-sun illumination for 5000 h.These findings demonstrate that the incorporation of FA cation into the DJ 2D perovskite is a promising strategy to develop highly efficient and stable DJ 2D PSCs. 展开更多
关键词 Dion-Jacobson 2D perovskites Perovskite solar cells Formamidinium doping power conversion efficiency
在线阅读 下载PDF
Gadolinium-incorporated CsPbI_(2)Br for boosting efficiency and long-term stability of all-inorganic perovskite solar cells 被引量:1
16
作者 Xingyu Pu Jiabao Yang +9 位作者 Tong Wang Shuaici Cheng Qi Cao Junsong Zhao Hui Chen Yixin Zhang Tingting Xu Ilhom Tojiboyev Hadi Salari Xuanhua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期9-17,I0001,共10页
All-inorganic CsPbI_(2)Br perovskite solar cells(PSCs)have received extensive research interests recently.Nevertheless,their low efficiency and poor long-term stability are still obstacles for further commercial appli... All-inorganic CsPbI_(2)Br perovskite solar cells(PSCs)have received extensive research interests recently.Nevertheless,their low efficiency and poor long-term stability are still obstacles for further commercial application.Herein,we demonstrate that high efficiency and exceptional long-term stability are realized by incorporating gadolinium(III)chloride(GdCl_(3))into the CsPbI_(2)Br perovskite film.The incorporation of GdCl_(3) enhances the Goldschmidt tolerance factor of CsPbI_(2)Br perovskite,yielding a dense perovskite film with small grains,thus the a-phase CsPbI_(2)Br is remarkably stabilized.Additionally,it is found that the GdCl_(3)-incorporated perovskite film achieves suppressed charge recombination and appropriate energy level alignment compared with the pristine CsPbI_(2)Br film.The noticeable increment in efficiency from14.01%(control PSC)to 16.24%is achieved for GdCl_(3)-incorporated PSC.Moreover,the nonencapsulated GdCl_(3)-incorporated PSC exhibits excellent environmental and thermal stability,remaining over 91%or90%of the original efficiency after 1200 h aging at 40%relative humidity or 480 h heating at 85℃ in nitrogen glove box respectively.The encapsulated GdCl_(3)-incorporated PSC presents an improved operational stability with over 88%of initial efficiency under maximum power point(MPP)tracking at 45℃ for1000 h.This work presents an effective ion-incorporation approach for boosting efficiency and long-term stability of all-inorganic PSCs. 展开更多
关键词 All-inorganic perovskite CsPbI_(2)Br Gadolinium incorporation power conversion efficiency Long-term stability
在线阅读 下载PDF
Applications and functions of rare-earth ions in perovskite solar cells 被引量:1
17
作者 Limin Cang Zongyao Qian +5 位作者 Jinpei Wang Libao Chen Zhigang Wan Ke Yang Hui Zhang Yonghua Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期36-51,共16页
The emerging perovskite solar cells have been recognized as one of the most promising new-generation photovoltaic technologies owing to their potential of high efficiency and low production cost. However, the current ... The emerging perovskite solar cells have been recognized as one of the most promising new-generation photovoltaic technologies owing to their potential of high efficiency and low production cost. However, the current perovskite solar cells suffer from some obstacles such as non-radiative charge recombination, mismatched absorption, light induced degradation for the further improvement of the power conversion efficiency and operational stability towards practical application. The rare-earth elements have been recently employed to effectively overcome these drawbacks according to their unique photophysical properties. Herein, the recent progress of the application of rare-earth ions and their functions in perovskite solar cells were systematically reviewed. As it was revealed that the rare-earth ions can be coupled with both charge transport metal oxides and photosensitive perovskites to regulate the thin film formation, and the rare-earth ions are embedded either substitutionally into the crystal lattices to adjust the optoelectronic properties and phase structure, or interstitially at grain boundaries and surface for effective defect passivation. In addition, the reversible oxidation and reduction potential of rare-earth ions can prevent the reduction and oxidation of the targeted materials. Moreover, owing to the presence of numerous energetic transition orbits, the rare-earth elements can convert low-energy infrared photons or high-energy ultraviolet photons into perovskite responsive visible light, to extend spectral response range and avoid high-energy light damage. Therefore, the incorporation of rare-earth elements into the perovskite solar cells have demonstrated promising potentials to simultaneously boost the device efficiency and stability. 展开更多
关键词 PEROVSKITE solar cells rare-earth ions power conversion efficiency
在线阅读 下载PDF
Graphene quantum dots assisted photovoltage and efficiency enhancement in CdSe quantum dot sensitized solar cells 被引量:1
18
作者 Yuanyuan Zhong Hua Zhang +2 位作者 Dengyu Pan Liang Wang Xinhua Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期722-728,共7页
CdSe quantum dot sensitized solar cells (QDSCs) modified with graphene quantum dots (GQDs) have been successfully achieved in this work for the first time. Satisfactorily, the optimized photovoltage (Voc) of the... CdSe quantum dot sensitized solar cells (QDSCs) modified with graphene quantum dots (GQDs) have been successfully achieved in this work for the first time. Satisfactorily, the optimized photovoltage (Voc) of the modified QDSCs was approximately 0.04 V higher than that of plain CdSe QDSCs, consequently improving the photovoltaic performance of the resulting QDSCs. Served as a novel coating on the CdSe QD sensitized photoanode, GQDs played a vital role in improving Voc due to the suppressed charge recombination which has been confirmed by electron impedance spectroscopy as well as transient photovoltage decay measure- ments. Moreover, different adsorption sequences, concentration and deposition time of GQDs have also been systematically investigated to boost the power conversion efficiency (PCE) of CdSe QDSCs. After the coating of CdSe with GQDs, the resulting champion CdSe QDSCs exhibited an improved PCE of 6.59% under AM 1.5G full one sun illumination. 展开更多
关键词 Graphene quantum dot CdSe O DSCs Coating Open-circuit voltage power conversion efficiency
在线阅读 下载PDF
Beyond two-dimension: One-and zero-dimensional halide perovskites as new-generation passivators for high-performance perovskite solar cells
19
作者 Yuanyuan Zhao Huimin Xiang +3 位作者 Ran Ran Wei Zhou Wei Wang Zongping Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期189-208,I0007,共21页
Perovskite solar cells(PSCs) as a rising star in the photovoltaic field have received rapidly increasing attention recently due to the boosting power conversion efficiencies(PCEs) from 3.8% to 25.7% in the last13 year... Perovskite solar cells(PSCs) as a rising star in the photovoltaic field have received rapidly increasing attention recently due to the boosting power conversion efficiencies(PCEs) from 3.8% to 25.7% in the last13 years. Nevertheless, the conventional PSCs with three-dimensional(3D) halide perovskites as light absorbers suffer from inferior PCEs and poor durability under sunlight, high-temperature and humid conditions due to the high defect amount and structural instability of 3D perovskites, respectively. To tackle these crucial issues, lower-dimensional halide perovskites including zero-dimensional(0D), onedimensional(1D), and two-dimensional(2D) perovskites have been employed as efficient passivators to boost the PCEs and durability of 3D-PSCs due to the high structural stability and superior resistance against moisture, heat and sunlight. Therefore, in order to achieve better understanding about the advantages and superiorities of combining low-dimensional perovskites with their 3D counterparts in improving the PCEs and durability of 3D-PSCs, the recent advances in the development and fabrication of mixeddimensional PSCs with 1D/0D perovskites as passivators are summarized and discussed in the review.The superiority of 1D/0D perovskites as passivators over 2D counterparts, the passivation mechanism and the methods of 1D/0D perovskites are also presented and discussed. Furthermore, the rules to choose1D/0D perovskites or relevant spacer cations are also emphasized. On this basis, several specific strategies to design and fabricate mixed-dimensional PSCs with 1D/0D perovskites are presented and discussed.Finally, the crucial challenges and future research directions of mixed-dimensional PSCs with 1D/0D perovskites as passivators are also proposed and discussed. This review will provide some useful insights for the future development of high-efficiency and durable mixed-dimensional PSCs. 展开更多
关键词 Perovskite solar cells Mixed-dimensional Passivators Stability power conversion efficiency
在线阅读 下载PDF
Electronic and optical properties of 3N-doped graphdiyne/MoS_(2) heterostructures tuned by biaxial strain and external electric field
20
作者 Dong Wei Yi Li +6 位作者 Zhen Feng Gaofu Guo Yaqiang Ma Heng Yu Qingqing Luo Yanan Tang Xianqi Dai 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期501-508,共8页
The construction of van der Waals(vdW)heterostructures by stacking different two-dimensional layered materials have been recognised as an effective strategy to obtain the desired properties.The 3N-doped graphdiyne(N-G... The construction of van der Waals(vdW)heterostructures by stacking different two-dimensional layered materials have been recognised as an effective strategy to obtain the desired properties.The 3N-doped graphdiyne(N-GY)has been successfully synthesized in the laboratory.It could be assembled into a supercapacitor and can be used for tensile energy storage.However,the flat band and wide forbidden bands could hinder its application of N-GY layer in optoelectronic and nanoelectronic devices.In order to extend the application of N-GY layer in electronic devices,MoS_(2) was selected to construct an N-GY/MoS_(2) heterostructure due to its good electronic and optical properties.The N-GY/MoS_(2) heterostructure has an optical absorption range from the visible to ultraviolet with a absorption coefficient of 10^(5) cm^(-1).The N-GY/MoS_(2) heterostructure exhibits a type-II band alignment allows the electron–hole to be located on N-GY and MoS_(2) respectively,which can further reduce the electron–hole complexation to increase exciton lifetime.The power conversion efficiency of N-GY/MoS_(2) heterostructure is up to 17.77%,indicating it is a promising candidate material for solar cells.In addition,the external electric field and biaxial strain could effectively tune the electronic structure.Our results provide a theoretical support for the design and application of N-GY/MoS_(2) vdW heterostructures in semiconductor sensors and photovoltaic devices. 展开更多
关键词 two-dimensional layer materials HETEROSTRUCTURES electronic structure power conversion efficiency
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部