期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
ALLIED FUZZY c-MEANS CLUSTERING MODEL 被引量:2
1
作者 武小红 周建江 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期208-213,共6页
A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive... A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better. 展开更多
关键词 fuzzy c-means clustering possibilistic c means clustering allied fuzzy c-means clustering
在线阅读 下载PDF
NEW SHADOWED C-MEANS CLUSTERING WITH FEATURE WEIGHTS 被引量:2
2
作者 王丽娜 王建东 姜坚 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期273-283,共11页
Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the ... Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the prototype of each cluster. By integrating feature weights, a formula for weight calculation is introduced to the clustering algorithm. The selection of weight exponent is crucial for good result and the weights are updated iteratively with each partition of clusters. The convergence of the weighted algorithms is given, and the feasible cluster validity indices of data mining application are utilized. Experimental results on both synthetic and real-life numerical data with different feature weights demonstrate that the weighted algorithm is better than the other unweighted algorithms. 展开更多
关键词 fuzzy c-means shadowed sets shadowed c-means feature weights cluster validity index
在线阅读 下载PDF
Soil pore identification with the adaptive fuzzy C-means method based on computed tomography images 被引量:5
3
作者 Yue Zhao Qiaoling Han +1 位作者 Yandong Zhao Jinhao Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第3期1043-1052,共10页
The complex geometry and topology of soil is widely recognised as the key driver in many ecological processes. X-ray computed tomography (CT) provides insight into the internal structure of soil pores automatically an... The complex geometry and topology of soil is widely recognised as the key driver in many ecological processes. X-ray computed tomography (CT) provides insight into the internal structure of soil pores automatically and accurately. Until recently, there have not been methods to identify soil pore structures. This has restricted the development of soil science, particularly regarding pore geometry and spatial distribution. Through the adoption of the fuzzy clustering theory and the establishment of pore identification rules, a novel pore identification method is described to extract pore structures from CT soil images. The robustness of the adaptive fuzzy C-means method (AFCM), the adaptive threshold method, and Image-Pro Plus tools were compared on soil specimens under different conditions, such as frozen, saturated, and dry situations. The results demonstrate that the AFCM method is suitable for identifying pore clusters, especially tiny pores, under various soil conditions. The method would provide an optional technique for the study of soil micromorphology. 展开更多
关键词 CT soil IMAGES fuzzy c-means fuzzy clustering theory PORE IDENTIFICATION rule
在线阅读 下载PDF
A fast and effective fuzzy clustering algorithm for color image segmentation 被引量:4
4
作者 王改华 李德华 《Journal of Beijing Institute of Technology》 EI CAS 2012年第4期518-525,共8页
A fast and effective fuzzy clustering algorithm is proposed. The algorithm splits an image into n × n blocks, and uses block variance to judge whether the block region is homogeneous. Mean and center pixel of eac... A fast and effective fuzzy clustering algorithm is proposed. The algorithm splits an image into n × n blocks, and uses block variance to judge whether the block region is homogeneous. Mean and center pixel of each homogeneous block are extracted for feature. Each inhomogeneous block is split into separate pixels and the mean of neighboring pixels within a window around each pixel and pixel value are extracted for feature. Then cluster of homogeneous blocks and cluster of separate pixels from inhomogeneous blocks are carried out respectively according to different membership functions. In fuzzy clustering stage, the center pixel and center number of the initial clustering are calculated based on histogram by using mean feature. Then different membership functions according to comparative result of block variance are computed. Finally, modified fuzzy c-means with spatial information to complete image segmentation axe used. Experimental results show that the proposed method can achieve better segmental results and has shorter executive time than many well-known methods. 展开更多
关键词 cluster image segmentation fuzzy c-means HISTOGRAM
在线阅读 下载PDF
Research on Wind Power Prediction Modeling Based on Adaptive Feature Entropy Fuzzy Clustering
5
作者 HUANG Haixin KONG Chang 《沈阳理工大学学报》 CAS 2014年第4期75-80,共6页
Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia ar... Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia are analyzed and classified.Model of adaptive entropy weight for clustering is built.Wind power prediction model based on adaptive entropy fuzzy clustering feature weights is built.Simulation results show that the proposed method could distinguish the abnormal data and forecast more accurately and compute fastly. 展开更多
关键词 fuzzy c-means clustering adaptive feature weighted ENTROPY wind power prediction
在线阅读 下载PDF
Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection 被引量:1
6
作者 Yanhui Xu Yihao Gao +4 位作者 Yundan Cheng Yuhang Sun Xuesong Li Xianxian Pan Hao Yu 《Global Energy Interconnection》 EI CSCD 2023年第4期505-516,共12页
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an... The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution. 展开更多
关键词 Load substation clustering Simulated annealing genetic algorithm Kernel fuzzy c-means algorithm clustering evaluation
在线阅读 下载PDF
Comparison of Clustering Methods in Yeast Saccharomyces Cerevisiae
7
作者 Wen Wang Ni-Ni Rao Xi Chen Shang-Lei Xu 《Journal of Electronic Science and Technology》 CAS 2010年第2期178-182,共5页
In recent years, microarray technology has been widely applied in biological and clinical studies for simultaneous monitoring of gene expression in thousands of genes. Gene clustering analysis is found useful for disc... In recent years, microarray technology has been widely applied in biological and clinical studies for simultaneous monitoring of gene expression in thousands of genes. Gene clustering analysis is found useful for discovering groups of correlated genes potentially co-regulated or associated to the disease or conditions under investigation. Many clustering methods including k-means, fuzzy c-means, and hierarchical clustering have been widely used in literatures. Yet no comprehensive comparative study has been performed to evaluate the effectiveness of these methods, specially, in yeast saccharomyces cerevisiae. In this paper, these three gene clustering methods are compared. Classification accuracy and CPU time cost are employed for measuring performance of these algorithms. Our results show that hierarchical clustering outperforms k-means and fuzzy c-means clustering. The analysis provides deep insight to the complicated gene clustering problem of expression profile and serves as a practical guideline for routine microarray cluster analysis of gene expression. 展开更多
关键词 fuzzy c-means hierarchical clustering K-MEANS yeast saecharomyees cerevisiae.
在线阅读 下载PDF
基于样本加权的可能性模糊聚类算法 被引量:21
8
作者 刘兵 夏士雄 +1 位作者 周勇 韩旭东 《电子学报》 EI CAS CSCD 北大核心 2012年第2期371-375,共5页
可能性模糊聚类算法解决了噪音敏感和一致性聚类问题,但算法假定每个待分析样本对聚类的贡献相同,导致离群点或噪声点对算法的干扰较强,算法迭代次数过大.为此,提出一种基于样本加权的可能性模糊聚类算法,新算法具有更快的收敛速度,对... 可能性模糊聚类算法解决了噪音敏感和一致性聚类问题,但算法假定每个待分析样本对聚类的贡献相同,导致离群点或噪声点对算法的干扰较强,算法迭代次数过大.为此,提出一种基于样本加权的可能性模糊聚类算法,新算法具有更快的收敛速度,对标准数据集和人工数据集加噪后的测试结果表明,该算法具有更强的鲁棒性,在有效降低时间复杂度的同时能够取得较好的聚类准确率. 展开更多
关键词 样本加权 可能性C-均值聚类 可能性模糊聚类
在线阅读 下载PDF
可能性模糊C-均值聚类新算法 被引量:34
9
作者 武小红 周建江 《电子学报》 EI CAS CSCD 北大核心 2008年第10期1996-2000,共5页
模糊C-均值聚类(FCM)对噪声数据敏感和可能性C-均值聚类(PCM)对初始类中心非常敏感易导致一致性聚类.可能性模糊C-均值聚类(PFCM)综合了FCM和PCM算法并且克服了这些缺点.但是PFCM必须先运行FCM来计算参数.提出一种新的PCM算法,新的PCM... 模糊C-均值聚类(FCM)对噪声数据敏感和可能性C-均值聚类(PCM)对初始类中心非常敏感易导致一致性聚类.可能性模糊C-均值聚类(PFCM)综合了FCM和PCM算法并且克服了这些缺点.但是PFCM必须先运行FCM来计算参数.提出一种新的PCM算法,新的PCM算法利用协方差矩阵来计算参数衡量了数据集的紧凑程度且无须先运行FCM,在新的PCM和FCM基础上提出了新PFCM算法,该算法无须事先运行FCM以计算参数,减少了算法运算时间.对数据集的测试实验结果表明了提出的新算法能同时产生模糊隶属度和典型值,减少聚类时间,同时具有更好的分类准确率. 展开更多
关键词 模糊聚类 模糊C-均值聚类 可能性C-均值聚类 可能性模糊C-均值聚类
在线阅读 下载PDF
基于非欧式距离的可能性C-均值聚类 被引量:8
10
作者 武小红 周建江 +1 位作者 李海林 胡彩平 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2006年第6期702-705,共4页
改进型可能性C-均值聚类(Improved possib ilistic C-means,IPCM)是在综合了模糊C-均值聚类(Fuzzy C-means,FCM)和可能性C-均值聚类(Possib ilistic C-means,PCM)的基础上得到的。在IPCM的基础上,利用鲁棒统计观点和影响函数,引入一种... 改进型可能性C-均值聚类(Improved possib ilistic C-means,IPCM)是在综合了模糊C-均值聚类(Fuzzy C-means,FCM)和可能性C-均值聚类(Possib ilistic C-means,PCM)的基础上得到的。在IPCM的基础上,利用鲁棒统计观点和影响函数,引入一种新的距离度量以代替IPCM的目标函数中的欧式距离度量,提出了一种新的可能性C-均值聚类模型(A lternative improved possib ilistic C-means,A IPCM),并给出了该模型的具体实现算法。A IPCM具有良好的鲁棒性,更适合对含有噪声或野值的数据进行划分聚类。仿真实验表明,A IPCM能克服噪声敏感性问题,获得合适的聚类中心和高的聚类准确率。 展开更多
关键词 模糊聚类 改进型可能性C-均值聚类 新的改进型可能性C-均值聚类
在线阅读 下载PDF
可能性划分系数和模糊变差相结合的聚类有效性函数 被引量:11
11
作者 范九伦 吴成茂 《电子与信息学报》 EI CSCD 北大核心 2002年第8期1017-1021,共5页
基于可能性分布描述因子定义的可能性划分系数有随类数增加而单调递减的趋势,缺乏与数据集几何结构的直接联系。该文考虑到数据集的几何结构信息,对可能性划分系数进行改进,提出了新的聚类有效性标准。实验结果表明,该文提出的方法具有... 基于可能性分布描述因子定义的可能性划分系数有随类数增加而单调递减的趋势,缺乏与数据集几何结构的直接联系。该文考虑到数据集的几何结构信息,对可能性划分系数进行改进,提出了新的聚类有效性标准。实验结果表明,该文提出的方法具有良好的分类性能。 展开更多
关键词 模糊变差 函数 模糊C-均值聚类 聚类有效性 可能性划分系数 模式识别 模糊控制
在线阅读 下载PDF
基于模糊聚类的绿色工艺评价样本分类方法 被引量:6
12
作者 王宇钢 修世超 王柯元 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第3期387-391,共5页
针对绿色工艺评价样本具有不确定性、多维性以及量纲差异大的特点,为实现样本的合理分类,提出一种基于核的模糊可能性聚类新算法.该方法将核模糊聚类算法、可能性聚类算法和减法聚类算法相结合,以提高聚类的准确率;使用聚类有效性指标... 针对绿色工艺评价样本具有不确定性、多维性以及量纲差异大的特点,为实现样本的合理分类,提出一种基于核的模糊可能性聚类新算法.该方法将核模糊聚类算法、可能性聚类算法和减法聚类算法相结合,以提高聚类的准确率;使用聚类有效性指标作为分类条件,自适应确定最佳分类数.仿真实验结果表明,该算法具有较好的有效性和鲁棒性,并将该算法运用在绿色工艺评价样本分类中,得到了较好的分类效果,验证了算法的实用性. 展开更多
关键词 核模糊聚类 可能性聚类 减法聚类 有效性指标 绿色工艺 样本分类
在线阅读 下载PDF
一种二型模糊可能性聚类红外图像分割算法 被引量:3
13
作者 张玉花 陈秋红 《激光与红外》 CAS CSCD 北大核心 2009年第7期780-783,共4页
提出了一种新的基于二型模糊可能性聚类的红外图像分割算法。针对受概率约束的模糊聚类算法和不受概率约束的可能性聚类算法在红外图像分割时存在的问题,采用二型模糊系统融合两种分割算法的隶属度函数,将隶属度函数看作一个区间型分布... 提出了一种新的基于二型模糊可能性聚类的红外图像分割算法。针对受概率约束的模糊聚类算法和不受概率约束的可能性聚类算法在红外图像分割时存在的问题,采用二型模糊系统融合两种分割算法的隶属度函数,将隶属度函数看作一个区间型分布,而不是单独采用两种算法输出的确定模糊值。这种处理方式不但能有效抑制噪声及野值,而且能有效防止红外图像的过分割。实验仿真结果表明,该算法较传统聚类算法能获得更好的分割效果,可有效抑制噪声对目标区域分割的干扰。 展开更多
关键词 图像分割 可能性聚类 模糊聚类 二型模糊
在线阅读 下载PDF
多尺度可能性聚类算法 被引量:3
14
作者 胡雅婷 左春柽 +1 位作者 曲福恒 杨洋 《长春理工大学学报(自然科学版)》 2010年第4期124-127,共4页
针对可能性聚类算法对初始化参数敏感及容易产生重合聚类的问题,提出了多尺度可能性聚类算法(MPCM)。算法结合均值漂移聚类算法与可能性聚类算法的思想,使其既保留了均值漂移聚类算法中能够揭示数据的多尺度聚类结构、不依赖于初始化参... 针对可能性聚类算法对初始化参数敏感及容易产生重合聚类的问题,提出了多尺度可能性聚类算法(MPCM)。算法结合均值漂移聚类算法与可能性聚类算法的思想,使其既保留了均值漂移聚类算法中能够揭示数据的多尺度聚类结构、不依赖于初始化参数的优点,也保留了可能性聚类算法可对数据集进行模糊划分的优点。同时,避免了均值漂移算法计算量过大以及可能性聚类对容易产生重合聚类的缺点。与传统的可能性聚类及其改进算法的对比实验结果表明,MPCM能够更加准确地揭示数据在不同尺度下的聚类结构,具有相对较好的聚类性能。 展开更多
关键词 模糊聚类 可能性聚类 均值漂移 多尺度结构
在线阅读 下载PDF
一种约束的改进可能性C均值聚类方法研究 被引量:1
15
作者 肖振球 曾文华 《甘肃农业大学学报》 CAS CSCD 北大核心 2016年第6期149-154,共6页
【目的】针对改进的可能性C均值聚类方法(IPCM)运算效率低,难以处理复杂数据结构的问题,提出了一种约束的改进可能性C均值聚类方法(CIPCM).【方法】CIPCM方法采用多项式核将特征向量映射到一个隐性特征空间,便于处理复杂的数据结构;引... 【目的】针对改进的可能性C均值聚类方法(IPCM)运算效率低,难以处理复杂数据结构的问题,提出了一种约束的改进可能性C均值聚类方法(CIPCM).【方法】CIPCM方法采用多项式核将特征向量映射到一个隐性特征空间,便于处理复杂的数据结构;引入两个成对约束集合,降低聚类迭代次数,提高运算效率和抗干扰能力.实验采用国际公认的UCI公共测试数据集,并用错分率指标评测了目标分类性能.【结果】CIPCM方法的聚类错分率低,对噪声的鲁棒性强.【结论】CIPCM运算效率比高于改进可能性C均值聚类方法. 展开更多
关键词 聚类 C均值 模糊C均值 可能性C均值 改进的可能性C均值
在线阅读 下载PDF
面向权重的可能性MKFC算法 被引量:1
16
作者 唐益明 宋小成 +1 位作者 任福继 丰刚永 《微电子学与计算机》 北大核心 2020年第12期6-11,共6页
基于多核的模糊聚类(MKFC)是当前聚类领域的最新热点,但是其很难通过人工方式确定在组合中核函数权重大小,并更好地调整所使用的不同内核函数的权重比.为了解决以上问题,设计了自动称量MKFC算法的提案.首先,给出了该算法目标函数的核心... 基于多核的模糊聚类(MKFC)是当前聚类领域的最新热点,但是其很难通过人工方式确定在组合中核函数权重大小,并更好地调整所使用的不同内核函数的权重比.为了解决以上问题,设计了自动称量MKFC算法的提案.首先,给出了该算法目标函数的核心公式及其内在思想;其次,给出了Mercer核函数及多核距离的计算方法;然后给出了核函数权重的自动计算模式,由此形成了所提算法的流程;最后,在8个UCI数据库中进行测试,凭借与5种算法的分析对比,发现所提算法是较为理想的聚类方法. 展开更多
关键词 聚类 模糊C均值 可能性聚类 核函数
在线阅读 下载PDF
改进FCM算法在医学图像分割的方法研究
17
作者 李鹏 《数字技术与应用》 2012年第9期116-117,119,共3页
本文提出使用改进模糊C均值聚类(MFCM)算法和模糊可能性C均值聚类(FPCM)算法的图像分割方法并应用于医学图像分割过程中。MFCM算法是通过调整FCM算法的测量距离来批准标签像素受到其他图像像素和在切分中抑制噪声效果来约束,从而使得成... 本文提出使用改进模糊C均值聚类(MFCM)算法和模糊可能性C均值聚类(FPCM)算法的图像分割方法并应用于医学图像分割过程中。MFCM算法是通过调整FCM算法的测量距离来批准标签像素受到其他图像像素和在切分中抑制噪声效果来约束,从而使得成员变量没有最大约束值。基于真实医学图像的实验表明了MFCM算法和FPCM算法在医学图像中进行分割的实际效果,具体是通过对FCM、MFCM、FPCM进行精度对比来验证算法有效性。 展开更多
关键词 FCM聚类算法 MFCM FPCM 医学图像处理 图像分割
在线阅读 下载PDF
FPCM算法在织物悬垂性评价方面的应用
18
作者 张翠 李慧 薛天宇 《纺织科技进展》 CAS 2008年第6期43-45,共3页
由于织物悬垂性能评价指标的多维性、数据聚类边界的模糊性,以及测量误差的不可避免,使得数据集通常会含有噪声点,而常用的FCM聚类算法无法消除噪声点对聚类中心的影响。为解决这一问题,提出了采用FPCM算法对悬垂性的测量值进行聚类分析... 由于织物悬垂性能评价指标的多维性、数据聚类边界的模糊性,以及测量误差的不可避免,使得数据集通常会含有噪声点,而常用的FCM聚类算法无法消除噪声点对聚类中心的影响。为解决这一问题,提出了采用FPCM算法对悬垂性的测量值进行聚类分析,发现并剔除噪声点,从而更加客观地评价织物悬垂性,并通过实测数据验证了算法的准确性及有效性。 展开更多
关键词 悬垂性 模糊聚类 噪声点 评价 FPCM
在线阅读 下载PDF
3D reconstruction method based on contour features
19
作者 HAN Bao-ling ZHU Ying +2 位作者 LUO Qing-sheng XU Bo ZHANG Tian 《Journal of Beijing Institute of Technology》 EI CAS 2016年第3期301-308,共8页
To guarantee the accuracy and real-time of the 3D reconstruction method for outdoor scene,an algorithm based on region segmentation and matching was proposed.Firstly,on the basis of morphological gradient information,... To guarantee the accuracy and real-time of the 3D reconstruction method for outdoor scene,an algorithm based on region segmentation and matching was proposed.Firstly,on the basis of morphological gradient information,obtained by comparing color weight gradient images and proposing a multi-threshold segmentation,scene contour features were extracted by a watershed algorithm and a fuzzy c-means clustering algorithm.Secondly,to reduce the search area,increase the correct matching ratio and accelerate the matching speed,the region constraint was established according to a region's local position,area and gray characteristics,the edge pixel constraint was established according to the epipolar constraint and the continuity constraint.Finally,by using the stereo matching edge pixel pairs,their 3D coordinates were estimated according to the binocular stereo vision imaging model.Experimental results show that the proposed method can yield a high stereo matching ratio and reconstruct a 3D scene quickly and efficiently. 展开更多
关键词 gradient map watershed algorithm fuzzy c-means clustering algorithm region con-straint contour matching 3D reconstruction
在线阅读 下载PDF
Using FCM to Select Samples in Semi-Supervised Classification
20
作者 Chao Zhang Jian-Mei Cheng Liang-Zhong Yi 《Journal of Electronic Science and Technology》 CAS 2012年第2期130-134,共5页
For a semi-supervised classification system, with the increase of the training samples number, the system needs to be continually updated. As the size of samples set is increasing, many unreliable samples will also be... For a semi-supervised classification system, with the increase of the training samples number, the system needs to be continually updated. As the size of samples set is increasing, many unreliable samples will also be increased. In this paper, we use fuzzy c-means (FCM) clustering to take out some samples that are useless, and extract the intersection between the original training set and the cluster after using FCM clustering. The intersection between every class and cluster is reliable samples which we are looking for. The experiment result demonstrates that the superiority of the proposed algorithm is remarkable. 展开更多
关键词 fuzzy c-means clustering fuzzy k-nearest neighbor classifier instance selection.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部