A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is t...A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.展开更多
The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract ...The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing.展开更多
In order to improve reliability of the excavator's hydraulic system, a fault detection approach based on dynamic principal component analysis(PCA) was proposed. Dynamic PCA is an extension of PCA, which can effect...In order to improve reliability of the excavator's hydraulic system, a fault detection approach based on dynamic principal component analysis(PCA) was proposed. Dynamic PCA is an extension of PCA, which can effectively extract the dynamic relations among process variables. With this approach, normal samples were used as training data to develop a dynamic PCA model in the first step. Secondly, the dynamic PCA model decomposed the testing data into projections to the principal component subspace(PCS) and residual subspace(RS). Thirdly, T2 statistic and Q statistic performed as indexes of fault detection in PCS and RS, respectively. Several simulated faults were introduced to validate the approach. The results show that the dynamic PCA model developed is able to detect overall faults by using T2 statistic and Q statistic. By simulation analysis, the proposed approach achieves an accuracy of 95% for 20 test sample sets, which shows that the fault detection approach can be effectively applied to the excavator's hydraulic system.展开更多
In the field of fault diagnosis, the state equation of nonlinear system, including the actuator and the component, has been established. When the faults in the system appear, it is difficult to observe the fault isola...In the field of fault diagnosis, the state equation of nonlinear system, including the actuator and the component, has been established. When the faults in the system appear, it is difficult to observe the fault isolation between the actuator and the component. In order to diagnose the component fault in the nonlinear systems, a novel strategy is proposed. The nonlinear state equation with only the component system is built on mathematical equations. The nonlinearity of the component equation is expanded and estimated with Taylor series. If the actuator is perfect, the anomaly of the state equations reflects the component fault. The fault feature index is defined to detect the component fault and the initial fault. The numerical examples of the component faults are simulated for multiple-input multiple-output(MIMO)nonlinear systems. The results show that the component faults,as well as the incipient faults, can be detected. Furthermore, the effectiveness of the proposed strategy is verified. This method can also provide a foundation for the component fault reconfiguration control.展开更多
A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault inje...A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault injection model to trigger security exceptions.The testing process could be recorded by the monitoring mechanism of the strategy,and the monitoring information was written into the security log.The component vulnerabilities could be detected by the detecting algorithm through analyzing the security log.Lastly,some experiments were done in an integration testing platform to verify the applicability of the strategy.The experimental results show that the strategy is effective and operable.The detecting rate is more than 90%for vulnerability components.展开更多
由于柔性多状态开关(soft normal open point,SNOP)复杂的控制策略及其弱馈特性,传统配电网故障定位方法难以适用于柔性互联配电网(flexible distribution network,FDN)。因此,文中提出一种利用电流正序分量波形相似性进行FDN故障区段...由于柔性多状态开关(soft normal open point,SNOP)复杂的控制策略及其弱馈特性,传统配电网故障定位方法难以适用于柔性互联配电网(flexible distribution network,FDN)。因此,文中提出一种利用电流正序分量波形相似性进行FDN故障区段定位的方法。首先,针对SNOP的典型控制策略,分析FDN的短路故障特征。其次,计算配电网中不同故障位置电流正序分量的Tanimoto系数,通过对比不同位置的电流正序分量波形相似性,构建FDN短路故障定位判据,并通过Teager能量算子(Teager energy operation,TEO)实现故障时刻的精确定位,利用智能配电终端(smart terminal unit,STU)传递信息。最后,通过建模仿真对所提方法进行分析验证,结果表明该方法能够对故障区段进行准确定位,不受故障位置、故障类型、过渡电阻、采样频率及通信延时等因素的影响,验证了该方法的可行性与有效性。展开更多
基金Project(217/s/458)supported by Azarbaijan Shahid Madani University,Iran
文摘A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.
基金Project(51875481) supported by the National Natural Science Foundation of ChinaProject(2682017CX011) supported by the Fundamental Research Foundations for the Central Universities,China+2 种基金Project(2017M623009) supported by the China Postdoctoral Science FoundationProject(2017YFB1201004) supported by the National Key Research and Development Plan for Advanced Rail Transit,ChinaProject(2019TPL_T08) supported by the Research Fund of the State Key Laboratory of Traction Power,China
文摘The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing.
基金Project(2003AA430200) supported by the National High-Tech Research and Development Program of China
文摘In order to improve reliability of the excavator's hydraulic system, a fault detection approach based on dynamic principal component analysis(PCA) was proposed. Dynamic PCA is an extension of PCA, which can effectively extract the dynamic relations among process variables. With this approach, normal samples were used as training data to develop a dynamic PCA model in the first step. Secondly, the dynamic PCA model decomposed the testing data into projections to the principal component subspace(PCS) and residual subspace(RS). Thirdly, T2 statistic and Q statistic performed as indexes of fault detection in PCS and RS, respectively. Several simulated faults were introduced to validate the approach. The results show that the dynamic PCA model developed is able to detect overall faults by using T2 statistic and Q statistic. By simulation analysis, the proposed approach achieves an accuracy of 95% for 20 test sample sets, which shows that the fault detection approach can be effectively applied to the excavator's hydraulic system.
基金supported by the National Natural Science Foundation of China(6117509261433016)
文摘In the field of fault diagnosis, the state equation of nonlinear system, including the actuator and the component, has been established. When the faults in the system appear, it is difficult to observe the fault isolation between the actuator and the component. In order to diagnose the component fault in the nonlinear systems, a novel strategy is proposed. The nonlinear state equation with only the component system is built on mathematical equations. The nonlinearity of the component equation is expanded and estimated with Taylor series. If the actuator is perfect, the anomaly of the state equations reflects the component fault. The fault feature index is defined to detect the component fault and the initial fault. The numerical examples of the component faults are simulated for multiple-input multiple-output(MIMO)nonlinear systems. The results show that the component faults,as well as the incipient faults, can be detected. Furthermore, the effectiveness of the proposed strategy is verified. This method can also provide a foundation for the component fault reconfiguration control.
基金Project(513150601)supported by the National Pre-Research Project Foundation of China
文摘A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault injection model to trigger security exceptions.The testing process could be recorded by the monitoring mechanism of the strategy,and the monitoring information was written into the security log.The component vulnerabilities could be detected by the detecting algorithm through analyzing the security log.Lastly,some experiments were done in an integration testing platform to verify the applicability of the strategy.The experimental results show that the strategy is effective and operable.The detecting rate is more than 90%for vulnerability components.
文摘由于柔性多状态开关(soft normal open point,SNOP)复杂的控制策略及其弱馈特性,传统配电网故障定位方法难以适用于柔性互联配电网(flexible distribution network,FDN)。因此,文中提出一种利用电流正序分量波形相似性进行FDN故障区段定位的方法。首先,针对SNOP的典型控制策略,分析FDN的短路故障特征。其次,计算配电网中不同故障位置电流正序分量的Tanimoto系数,通过对比不同位置的电流正序分量波形相似性,构建FDN短路故障定位判据,并通过Teager能量算子(Teager energy operation,TEO)实现故障时刻的精确定位,利用智能配电终端(smart terminal unit,STU)传递信息。最后,通过建模仿真对所提方法进行分析验证,结果表明该方法能够对故障区段进行准确定位,不受故障位置、故障类型、过渡电阻、采样频率及通信延时等因素的影响,验证了该方法的可行性与有效性。