In this paper we discuss a kind of multitarget tracking and association method based on the data fusion of heterogeneous multiple feature data gained by a sensor such as space state, signal amplitude, Doppler frequenc...In this paper we discuss a kind of multitarget tracking and association method based on the data fusion of heterogeneous multiple feature data gained by a sensor such as space state, signal amplitude, Doppler frequency and so on. In order to introduce quantitatively those heterogeneous multiple feature data which are possibly gained by a sensor into the discussion of tracking and association problem, we define a correlation measure which we explain as the generalization of conventional association decision. In conventional Nearest Neighbor method, the decision function can take only two values, 1 or 0, to represent the decision of association or not association. In our method, correlation measure can be take any real value from 0 to 1 to represent the extent of correlation. Considering the practical circumstances that some feature data might not be easily gained continuously, we introduce an effective factor to deal with these cases. In the paper we also discuss the comparative computer simulation tests and give the results.展开更多
Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed.The proposed controller comprises an extended disturbance observer(EDOB)and a nonlin...Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed.The proposed controller comprises an extended disturbance observer(EDOB)and a nonlinear robust control law synthesized by the backstepping method.The EDOB is designed to estimate not only the influence of disturbances but also the parameter uncertainties.With the use of parameter and disturbance estimates,the nonlinear cascade controller,which consists of an outer position tracking loop and an inner load pressure loop,is further designed to attenuate the effects of parameter and disturbance estimation errors.The stability of the closed-loop system is proven by means of Lyapunov theory.Extensive comparative experimental results obtained verify the effectiveness of the proposed nonlinear cascade controller and its performance robustness to parameter and external disturbance variations in practical implementation.展开更多
In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measur...In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measurements of two typical sections, one train-head section and one train-body section, at the windward and leeward tracks were conducted under the smooth and turbulence flows with wind attack angles between-6° and 6°, and the corresponding aerodynamic force coefficients were also calculated using the integral method. The experimental results indicate that the track position affects the mean aerodynamic characteristics of the vehicle, especially for the train-body section. The fluctuating pressure coefficients at the leeward track are more significantly affected by the bridge interference compared to those at the windward track. The effect of turbulence on the train-head section is less than that on the train-body section. Additionally, the mean aerodynamic force coefficients are almost negatively correlated to wind attack angles, which is more prominent for vehicles at the leeward track. Moreover, the lateral force plays a critical role in determining the corresponding overturning moment, especially on the train-body section.展开更多
Aiming at the position and attitude tracking of coaxial rotor aircraft(CRA),this paper proposes a combinatorial control method of sliding mode control(SMC)coupled with proportional-integralderivative control(PIDC).Con...Aiming at the position and attitude tracking of coaxial rotor aircraft(CRA),this paper proposes a combinatorial control method of sliding mode control(SMC)coupled with proportional-integralderivative control(PIDC).Considering the complete description of flight dynamics,aerodynamics and airflow interference,the dynamical model of CRA is established.The dynamical model is simplified according to the actual flight,then the simplified dynamical model is divided into two subsystems:a fully-actuated subsystem and an under-actuated subsystem.The controller of the fully-actuated subsystem consists of a SMC controller coupled with a rate bounded PIDC controller,while the controller of the under-actuated subsystem is composed of a SMC controller.The sliding manifold is defined by combining the position and velocity tracking errors of the state variables for each subsystem.Lyapunov stability theory is used to verify the stability of the sliding mode controller,which ensures that all state trajectories of the system can reach and stay on the sliding mode surface,the uncertainty and external interference of the model are compensated.Simulation and experiment compared with the conventional PIDC are carried out,the results demonstrate the effectiveness and the robustness of the proposed control method of this paper.展开更多
Track monitoring is a fast method of determining incorrect return-to-track and track-to-track assignments. An analytical method to evaluate the effectiveness of track monitoring was presented by reference [1]. In orde...Track monitoring is a fast method of determining incorrect return-to-track and track-to-track assignments. An analytical method to evaluate the effectiveness of track monitoring was presented by reference [1]. In order to reduce the probability of initiating or accepting the ghost track, two sequential track monitoring algorithms, which use the inclination angles to form test statistics, are proposed in this paper. Two decision rules are given and the corresponding thresholds are derived. The paper also gives the estimation methods of the noncentral parameter of noncentral chi-square distribution when the true value of it is unknown, the algorithms can adaptively estimate the decision thresholds and can make sequential track monitoring decision on line. Simulation is also made and the results show that the proposed algorithms are effective and feasible.展开更多
基金supported by the International S&T Cooperation Projects of China(2015DFR10510)the National Natural Science Foundation of China(61440048+1 种基金61562018)the Scientific Research Program of the Higher Education Institutions of Hainan Province(HNKY2014-04)
文摘In this paper we discuss a kind of multitarget tracking and association method based on the data fusion of heterogeneous multiple feature data gained by a sensor such as space state, signal amplitude, Doppler frequency and so on. In order to introduce quantitatively those heterogeneous multiple feature data which are possibly gained by a sensor into the discussion of tracking and association problem, we define a correlation measure which we explain as the generalization of conventional association decision. In conventional Nearest Neighbor method, the decision function can take only two values, 1 or 0, to represent the decision of association or not association. In our method, correlation measure can be take any real value from 0 to 1 to represent the extent of correlation. Considering the practical circumstances that some feature data might not be easily gained continuously, we introduce an effective factor to deal with these cases. In the paper we also discuss the comparative computer simulation tests and give the results.
基金Project(51505474)supported by the National Natural Science Foundation of ChinaProject(2015XKMS020)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2016T90520)supported by the China Postdoctoral Science FoundationProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed.The proposed controller comprises an extended disturbance observer(EDOB)and a nonlinear robust control law synthesized by the backstepping method.The EDOB is designed to estimate not only the influence of disturbances but also the parameter uncertainties.With the use of parameter and disturbance estimates,the nonlinear cascade controller,which consists of an outer position tracking loop and an inner load pressure loop,is further designed to attenuate the effects of parameter and disturbance estimation errors.The stability of the closed-loop system is proven by means of Lyapunov theory.Extensive comparative experimental results obtained verify the effectiveness of the proposed nonlinear cascade controller and its performance robustness to parameter and external disturbance variations in practical implementation.
基金Projects(51808563,51925808)supported by the National Natural Science Foundation of ChinaProject(KLWRTBMC18-03)supported by the Open Research Fund of the Key Laboratory of Wind Resistance Technology of Bridges of ChinaProject(2017YFB1201204)supported by the National Key R&D Program of China。
文摘In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measurements of two typical sections, one train-head section and one train-body section, at the windward and leeward tracks were conducted under the smooth and turbulence flows with wind attack angles between-6° and 6°, and the corresponding aerodynamic force coefficients were also calculated using the integral method. The experimental results indicate that the track position affects the mean aerodynamic characteristics of the vehicle, especially for the train-body section. The fluctuating pressure coefficients at the leeward track are more significantly affected by the bridge interference compared to those at the windward track. The effect of turbulence on the train-head section is less than that on the train-body section. Additionally, the mean aerodynamic force coefficients are almost negatively correlated to wind attack angles, which is more prominent for vehicles at the leeward track. Moreover, the lateral force plays a critical role in determining the corresponding overturning moment, especially on the train-body section.
基金supported by National Natural Science Founda-tion of china(Grant No.51774042).
文摘Aiming at the position and attitude tracking of coaxial rotor aircraft(CRA),this paper proposes a combinatorial control method of sliding mode control(SMC)coupled with proportional-integralderivative control(PIDC).Considering the complete description of flight dynamics,aerodynamics and airflow interference,the dynamical model of CRA is established.The dynamical model is simplified according to the actual flight,then the simplified dynamical model is divided into two subsystems:a fully-actuated subsystem and an under-actuated subsystem.The controller of the fully-actuated subsystem consists of a SMC controller coupled with a rate bounded PIDC controller,while the controller of the under-actuated subsystem is composed of a SMC controller.The sliding manifold is defined by combining the position and velocity tracking errors of the state variables for each subsystem.Lyapunov stability theory is used to verify the stability of the sliding mode controller,which ensures that all state trajectories of the system can reach and stay on the sliding mode surface,the uncertainty and external interference of the model are compensated.Simulation and experiment compared with the conventional PIDC are carried out,the results demonstrate the effectiveness and the robustness of the proposed control method of this paper.
文摘Track monitoring is a fast method of determining incorrect return-to-track and track-to-track assignments. An analytical method to evaluate the effectiveness of track monitoring was presented by reference [1]. In order to reduce the probability of initiating or accepting the ghost track, two sequential track monitoring algorithms, which use the inclination angles to form test statistics, are proposed in this paper. Two decision rules are given and the corresponding thresholds are derived. The paper also gives the estimation methods of the noncentral parameter of noncentral chi-square distribution when the true value of it is unknown, the algorithms can adaptively estimate the decision thresholds and can make sequential track monitoring decision on line. Simulation is also made and the results show that the proposed algorithms are effective and feasible.