期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Review on the Development of Oil and Gas Flow in Underground Porous Media 被引量:1
1
作者 李军诗 王晓冬 +1 位作者 刘鹏程 侯晓春 《Petroleum Science》 SCIE CAS CSCD 2004年第4期88-94,共7页
Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main facto... Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main factors, which affect the development of the theory on oil and gas porous flow. The development law and development route of the mechanics of fluids in porous media are also summarized in this paper. 展开更多
关键词 porous flow mechanics of fluids in porous media viscous fluids mechanics of ground water petroleum and natural gas engineering REVIEW PROGRESSION
在线阅读 下载PDF
Evaluation of gas wettability and its effects on fluid distribution and fluid flow in porous media 被引量:11
2
作者 Jiang Guancheng Li Yingying Zhang Min 《Petroleum Science》 SCIE CAS CSCD 2013年第4期515-527,共13页
The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferent... The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferentially gas-covered ability and surface free energy changes,definition and evaluation methods have been established.Second,a method for altering rock wettability and its mechanisms have been studied,surface oriented phenomena of functional groups with low surface energy are the fundamental reason for gas wettability alteration of rock.Third,the effect of gas wettability on the surface energy,electrical properties and dilatability are investigated.Last,the effects of gas wettability on capillary pressure,oil/gas/water distribution and flow are investigated with capillary tubes and etchedglass network models.The gas wettability theory of reservoir rocks has been initially established,which provides theoretical support for the efficient production of unconventional reservoirs and has great significance. 展开更多
关键词 Gas-wetting fluorocarbon copolymer contact angle capillary pressure surface free energy surface property fluid flow in porous media
在线阅读 下载PDF
Effects of Solid Matrix and Porosity of Porous Medium on Heat Transfer of Marangoni Boundary Layer Flow Saturated with Power-Law Nanofluids
3
作者 陈晖 肖天丽 +1 位作者 陈嘉阳 沈明 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期80-84,共5页
The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of soli... The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of solid matrix of porous medium including glass balls and aluminum foam are considered. The governing partial differential equations are simplified by dimensionless variables and similarity transformations, and are solved numerically by using a shooting method with the fourth-fifth-order Runge-Kutta integration technique. It is indicated that the increase of the porosity leads to the enhancement of heat transfer in the surface of the Marangoni boundary layer flow. 展开更多
关键词 of is as Effects of Solid Matrix and Porosity of porous Medium on Heat Transfer of Marangoni Boundary Layer flow Saturated with Power-Law Nanofluids in with on
在线阅读 下载PDF
Development of a new correlation to calculate permeability for flows with high Knudsen number
4
作者 Esmaeil Dehdashti 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第2期271-277,共7页
Flows with high Knudsen number play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow with high Knudsen number using modified lattice Boltzmann method (LB... Flows with high Knudsen number play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow with high Knudsen number using modified lattice Boltzmann method (LBM) through a porous medium in a channel. The effect of collision between molecules and solid walls, which is required to accurately simulate transition flow regime, is taken into account using a modified relaxation time. Slip velocity on the wall, which is another significant difficulty in simulating transition flow regime, is captured using the slip reflection boundary condition (SRBC). The geometry of porous medium is considered as in-line and staggered. The results are in good agreement with previous works. A new correlation is obtained between permeability, Knudsen number and porosity for flows in transition flow regimes. 展开更多
关键词 flow in porous micro-channel lattice Boltzmann method high Knudsen number PERMEABILITY
在线阅读 下载PDF
Ethoxylated molybdenum disulphide based nanofluid for enhanced oil recovery
5
作者 Infant Raj Zhuo Lu +2 位作者 Ji-Rui Hou Yu-Chen Wen Li-Xiao Xiao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3417-3427,共11页
Despite advances in renewable energy sources, the world's current infrastructure and consumption patterns still heavily depend on crude oil. Enhanced oil recovery(EOR) is a crucial method for significantly increas... Despite advances in renewable energy sources, the world's current infrastructure and consumption patterns still heavily depend on crude oil. Enhanced oil recovery(EOR) is a crucial method for significantly increasing the amount of crude oil extracted from mature and declining oil fields. Nanomaterials have shown great potential in improving EOR methods due to their unique properties, such as high surface area, tunable surface chemistry, and the ability to interact at the molecular level with fluids and rock surfaces. This study examines the potential use of incorporating ethoxylated molybdenum disulfide with a unique three-dimensional flower-like morphology for overcoming the challenges associated with oil recovery from reservoirs characterized by complex pore structures and low permeability. The synthesized nanomaterial features a chemical composition that encompasses a polar ethoxy group linking molybdenum disulfide nanosheets and an alkylamine chain. The ethoxy group promotes interactions with water molecules through hydrogen bonding and electrostatic forces, disrupting the cohesive forces among water molecules and reduction surface tension at the oil-water interface. As a result, the nanomaterial achieves an ultra-low interfacial tension of 10^(-3) mN/m. Core flooding experiments demonstrate a significant oil recovery of approximately 70% at a concentration as low as 50 ppm. This research paves the way for the design and synthesis of advanced extended surfactant-like nanomaterials,offering a promising avenue for enhancing oil recovery efficiency. 展开更多
关键词 Molybdenum disulfide NANOFLUID flow in porous media Core flooding Interfacial tension
在线阅读 下载PDF
Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel 被引量:9
6
作者 Khaled S.Mekheimer Soliman R.Komy Sara I.Abdelsalam 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期323-332,共10页
Peristaltic motion induced by a surface acoustic wave of a viscous, compressible and electrically conducting Maxwell fluid in a confined parallel-plane microchannel through a porous medium is investigated in the prese... Peristaltic motion induced by a surface acoustic wave of a viscous, compressible and electrically conducting Maxwell fluid in a confined parallel-plane microchannel through a porous medium is investigated in the presence of a constant magnetic field. The slip velocity is considered and the problem is discussed only for the free pumping case. A perturbation technique is employed to analyze the problem in terms of a small amplitude ratio. The phenomenon of a “backward flow” is found to exist in the center and at the boundaries of the channel. In the second order approximation, the net axial velocity is calculated for various values of the fluid parameters. Finally, the effects of the parameters of interest on the mean axial velocity, the reversal flow, and the perturbation function are discussed and shown graphically. We find that in the non-Newtonian regime, there is a possibility of a fluid flow in the direction opposite to the propagation of the traveling wave. This work is the most general model of peristalsis created to date with wide-ranging applications in biological, geophysical and industrial fluid dynamics. 展开更多
关键词 peristaltic flow Maxwell fluid porous medium slip flow microchannel
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部