期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
Merging polymers of intrinsic microporosity and porous carbon-based zinc oxide composites in novel mixed matrix membranes for efficient gas separation
1
作者 Muning Chen Jiemei Zhou +7 位作者 Jing Ma Weigang Zheng Guanying Dong Xin Li Zhihong Tian Yatao Zhang Jing Wang Yong Wang 《Green Energy & Environment》 SCIE EI CAS 2025年第1期203-213,共11页
Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a sim... Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials. 展开更多
关键词 Mixed matrix membranes Polymers of intrinsic microporosity CO_(2)separation porous carbon materials
在线阅读 下载PDF
Facile synthesis of accordion-like porous carbon from waste PET bottles-based MIL-53(Al)and its application for high-performance Zn-ion capacitor 被引量:1
2
作者 Jiaxin Li Shuai Zhang +6 位作者 Yumeng Hua Yichao Lin Xin Wen Ewa Mijowska Tao Tang Xuecheng Chen Rodney S.Ruoff 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1138-1150,共13页
It is of great scientific and economic value to recycle waste poly(ethylene terephthalate)(PET)into high-value PET-based metal organic frameworks(MOFs)and further convert it into porous carbon for green energy storage... It is of great scientific and economic value to recycle waste poly(ethylene terephthalate)(PET)into high-value PET-based metal organic frameworks(MOFs)and further convert it into porous carbon for green energy storage applications.In the present study,a facile and costeffective hydrothermal process was developed to direct recycle waste PET bottles into MIL-53(Al)with a 100% conversation,then the MOFderived porous carbon was assembled into electrodes for high-performance supercapacitors.The results indicated that the as-synthesized carbon exhibited high SSA of 1712 m^(2)g^(-1)and unique accordion-like structure with hierarchical porosity.Benefit to these advantageous characters,the assembled three-electrode supercapacitor displayed high specific capacitances of 391 F g^(-1)at the current density of 0.5 A g^(-1)and good rate capability of 73.6% capacitance retention at 20 A g^(-1)in 6 mol L^(-1)KOH electrolyte.Furthermore,the assembled zinc ion capacitor still revealed outstanding capacitance of 335 F g^(-1)at 0.1 A g^(-1),excellent cycling stability of 92.2% capacitance retention after 10000 cycles and ultra-high energy density of 150.3 Wh kg^(-1)at power density of 90 W kg^(-1)in 3 mol L^(-1)ZnSO_(4)electrolyte.It is believed that the current work provides a facile and effective strategy to recycle PET waste into high-valuable MOF,and further expands the applications of MOF-derived carbons for high-performance energy storage devices,so it is conducive to both pollution alleviation and sustainable economic development. 展开更多
关键词 PET RECYCLING porous carbon SUPERCAPACITOR Energy storage
在线阅读 下载PDF
Facile preparation of Fe/N-based biomass porous carbon composite towards enhancing the thermal decomposition of DAP-4
3
作者 Er-hai An Xiao-xia Li +5 位作者 Cun-juan Yu Ying-xin Tan Zi-jun Fan Qing-xia Li Peng Deng Xiong Cao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期288-294,共7页
Fe/N-based biomass porous carbon composite(Fe/N-p Carbon) was prepared by a facile high-temperature carbonization method from biomass,and the effect of Fe/N-p Carbon on the thermal decomposition of energetic molecular... Fe/N-based biomass porous carbon composite(Fe/N-p Carbon) was prepared by a facile high-temperature carbonization method from biomass,and the effect of Fe/N-p Carbon on the thermal decomposition of energetic molecular perovskite-based material DAP-4 was studied.Biomass porous carbonaceous materials was considered as the micro/nano support layers for in situ deposition of Fe/N precursors.Fe/Np Carbon was prepared simply by the high-temperature carbonization method.It was found that it showed the inherent catalysis properties for thermal decomposition of DAP-4.The heat release of DAP-4/Fe/N-p Carbon by DSC curves tested had increased slightly,compared from DAP-4/Fe/N-p Carbon-0.The decomposition temperature peak of DAP-4 at the presence of Fe/N-p Carbon had reduced by 79°C from384.4°C(pure DAP-4) to 305.4°C(DAP-4/Fe/N-p Carbon-3).The apparent activation energy of DAP-4thermal decomposition also had decreased by 29.1 J/mol.The possible catalytic decomposition mechanism of DAP-4 with Fe/N-p Carbon was proposed. 展开更多
关键词 Biomass materials porous carbon DAP-4 Thermal decomposition Facile method
在线阅读 下载PDF
Self-templating synthesis of biomass-based porous carbon nanotubes for energy storage and catalytic degradation applications
4
作者 Manman Xu Shiqi Fu +7 位作者 Yukai Wen Wei Li Qiongfang Zhuo Haida Zhu Zhikeng Zheng Yuwen Chen Anqi Wang Kai Yan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期584-595,共12页
Dwindling energy sources and a worsening environment are huge global problems,and biomass wastes are an under-exploited source of material for both energy and material generation.Herein,self-template decoction dregs o... Dwindling energy sources and a worsening environment are huge global problems,and biomass wastes are an under-exploited source of material for both energy and material generation.Herein,self-template decoction dregs of Ganoderma lucidum-derived porous carbon nanotubes(ST-DDLGCs)were synthesized via a facile and scalable strategy in response to these challenges.ST-DDLGCs exhibited a large surface area(1731.51 m^(2)g^(-1))and high pore volume(0.76 cm^(3)g^(-1)),due to the interlacing tubular structures of precursors and extra-hierarchical porous structures on tube walls.In the ST-DDLGC/PMS system,the degradation efficiency of capecitabine(CAP)reached~97.3%within 120 min.Moreover,ST-DDLGCs displayed high catalytic activity over a wide pH range of 3–9,and strong anti-interference to these typical and ubiquitous anions in wastewater and natural water bodies(i.e.,H_(2)PO_(4)^(-),NO_(3)^(-),Cl^(-) and HCO_(3)^(-)),in which a ^(1)O_(2)-dominated oxidation was identified and non-radical mechanisms were deduced.Additionally,ST-DDLGC-based coin-type symmetrical supercapacitors exhibited outstanding electrochemical performance,with specific capacitances of up to 328.1 F g^(-1)at 0.5 A g^(-1),and cycling stability of up to 98.6%after 10,000 cycles at a current density of 2 A g^(-1).The superior properties of ST-DDLGCs could be attributed to the unique porous tubular structure,which facilitated mass transfer and presented numerous active sites.The results highlight ST-DDLGCs as a potential candidate for constructing inexpensive and advanced environmentally functional materials and energy storage devices. 展开更多
关键词 Ganoderma lucidum residue porous carbon nanotubes Self-template method Wastewater treatment Supercapacitor electrode
在线阅读 下载PDF
Preparation and Electrochemical Performance Study of Catalytic Cracking Oil Slurry-based Porous Carbon Materials
5
作者 Liu Qi Zhao Gaiju +3 位作者 Liu Xingge Yu Hewei Sun Rongfeng Geng Wenguang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期34-45,共12页
Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industr... Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industry.In this study,oxygen-enriched activated carbon is prepared using a one-step KOH activation method with catalytic cracking oil slurry as the raw material.The as-prepared oil slurry-based activated carbon exhibits a high specific surface area of 2102 m^(2)/g,welldefined micropores with an average diameter of 2 nm,and a rich oxygen doping content of 32.97%.The electrochemical performance of the nitrogen-doped porous carbon is tested in a three-electrode system using a 6 mol/L KOH solution as the electrolyte.It achieves a specific capacitance of up to 230 F/g at a current density of 1 A/g.Moreover,the capacitance retention rate exceeds 89%after 10000 charge and discharge cycles,demonstrating excellent cycle stability.This method not only improves the utilization efficiency of industrial fuel waste but also reduces the production cost of supercapacitor electrode materials,thereby providing a simple and effective strategy for the resource utilization of catalytic cracking oil slurries. 展开更多
关键词 catalytic cracking slurry porous carbon SUPERCAPACITOR KOH activation
在线阅读 下载PDF
Sulfur/carbon composites prepared with ordered porous carbon for Li-S battery cathode 被引量:3
6
作者 Xin Zhuang Yingjia Liu +2 位作者 Jian Chen Hao Chen Baolian Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期391-396,共6页
Ordered porous cabon with a 2-D hexagonal structure,high specific surface area and large pore volume was synthesized through a twostep heating method using tri-block copolymer as template and phenolic resin as carbon ... Ordered porous cabon with a 2-D hexagonal structure,high specific surface area and large pore volume was synthesized through a twostep heating method using tri-block copolymer as template and phenolic resin as carbon precursor.The results indicated the electrochemical performance of the sulfur/carbon composites prepared with the ordered porous carbon was significantly affected by the pore structure of the carbon.Both the specific capacity and cycling stability of the sulfur/carbon composites were improved using the bimodal micro/meso-porous carbon frameworks with high surface area.Its initial discharge capacity can be as high as 1200 mAh·g-1 at a current density of 167.5 mA·g-1The improved capacity retention was obtained during the cell cycling as well. 展开更多
关键词 lithium-sulfur battery sulfur/carbon composite ordered porous carbon bimodal micro/meso-porous carbon tri-block copolymer
在线阅读 下载PDF
Effect of the pore length and orientation upon the electrochemical capacitive performance of ordered mesoporous carbons 被引量:2
7
作者 Anran Huang Jingwang Yan +2 位作者 Hongzhang Zhang Xianfeng Li Huamin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期121-128,共8页
By utilizing hard template method to adjust the mesopore length, and alkali activation to generate micro pores, two hierarchical porous carbons (HPCs) were prepared. With controlling of their mesopore length and the a... By utilizing hard template method to adjust the mesopore length, and alkali activation to generate micro pores, two hierarchical porous carbons (HPCs) were prepared. With controlling of their mesopore length and the activation conditions, the complex system composed by HPCs and electrolyte was simplified and the effect of mesopore length on the performance of HPCs as electrodes in supercapacitors was investigated. It is found that with the mesopore length getting smaller, the ordered area gets smaller and the aggregation occurs, which is caused by the high surface energy of small grains. HPC with long pores (HPCL) exhibits a donut-like morphology with well-defined ordered mesopores and a regular orientation while in HPC with short pores (HPCS), short mesopores are only orderly distributed in small regions. Longer ordered channels form unobstructed ways for ions transport in the particles while shorter channels, only orderly distributed in small areas, results in blocked paths, which may hinder the electrolyte ions transport. Due to the unobstructed structure, HPCL exhibits good rate capability with a capacitance retention rate over 86% as current density increasing from 50 mA/g to 1000 mA/g. The specific capacitance of HPCL derived from the cyclic voltammetry test at 10 mV/s is up to 201.72 F/g, while the specific capacitance of HPCS is only 193.65 F/g. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 SUPERCAPACITOR Hierarchical porous carbon Ordered mesoporous carbon Hard template
在线阅读 下载PDF
A Review on Metal-Organic Framework-Derived Porous Carbon-Based Novel Microwave Absorption Materials 被引量:27
8
作者 Zhiwei Zhang Zhihao Cai +5 位作者 Ziyuan Wang Yaling Peng Lun Xia Suping Ma Zhanzhao Yin Yi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第4期1-29,共29页
The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar st... The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar stealth for protecting the weapons from being detected.Many nanomaterials were studied as MAMs,but not all of them have the satisfactory performance.Recently,metal-organic frameworks(MOFs) have attracted tremendous attention owing to their tunable chemical structures,diverse properties,large specific surface area and uniform pore distribution.MOF can transform to porous carbon(PC) which is decorated with metal species at appropriate pyrolysis temperature.However,the loss mechanism of pure MOF-derived PC is often relatively simple.In order to further improve the MA performance,the MOFs coupled with other loss materials are a widely studied method.In this review,we summarize the theories of MA,the progress of different MOF-derived PC-based MAMs,tunable chemical structures incorporated with dielectric loss or magnetic loss materials.The different MA performance and mechanisms are discussed in detail.Finally,the shortcomings,challenges and perspectives of MOF-derived PC-based MAMs are also presented.We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application. 展开更多
关键词 Metal-organic frameworks porous carbon Microwave absorption material Reflection loss Effective absorption bandwidth
在线阅读 下载PDF
Biomass-Derived Porous Carbon-Based Nanostructures for Microwave Absorption 被引量:23
9
作者 Huanqin Zhao Yan Cheng +5 位作者 Wei Liu Lieji Yang Baoshan Zhang Luyuan Paul Wang Guangbin Ji Zhichuan J.Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第2期81-97,共17页
Currently,electromagnetic(EM) pollution poses severe complication toward the operation of electronic devices and biological systems.To this end,it is pertinent to develop novel microwave absorbers through compositiona... Currently,electromagnetic(EM) pollution poses severe complication toward the operation of electronic devices and biological systems.To this end,it is pertinent to develop novel microwave absorbers through compositional and structural design.Porous carbon(PC)materials demonstrate great potential in EM wave absorption due to their ultralow density,large surface area,and excellent dielectric loss ability.However,the large-scale production of PC materials through low-cost and simple synthetic route is a challenge.Deriving PC materials through biomass sources is a sustainable,ubiquitous,and low-cost method,which comes with many desired features,such as hierarchical texture,periodic pattern,and some unique nanoarchitecture.Using the bio-inspired microstructure to manufacture PC materials in mild condition is desirable.In this review,we summarize the EM wave absorption application of biomass-derived PC materials from optimizing structureand designing composition.The corresponding synthetic mechanisms and development prospects are discussed as well.The perspective in this field is given at the end of the article. 展开更多
关键词 Biomass resource porous carbon Microwave absorption
在线阅读 下载PDF
An Equivalent Substitute Strategy for Constructing 3D Ordered Porous Carbon Foams and Their Electromagnetic Attenuation Mechanism 被引量:9
10
作者 Meng Zhang Hailong Ling +11 位作者 Ting Wang Yingjing Jiang Guanying Song Wen Zhao Laibin Zhao Tingting Cheng Yuxin Xie Yuying Guo Wenxin Zhao Liying Yuan Alan Meng Zhenjiang Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第10期15-35,共21页
Three-dimensional(3D)ordered porous carbon is generally believed to be a promising electromagnetic wave(EMW)absorbing material.However,most research works targeted performance improvement of 3D ordered porous carbon,a... Three-dimensional(3D)ordered porous carbon is generally believed to be a promising electromagnetic wave(EMW)absorbing material.However,most research works targeted performance improvement of 3D ordered porous carbon,and the specific attenuation mechanism is still ambiguous.Therefore,in this work,a novel ultra-light egg-derived porous carbon foam(EDCF)structure has been successfully constructed by a simple carbonization combined with the silica microsphere template-etching process.Based on an equivalent substitute strategy,the influence of pore volume and specific surface area on the electromagnetic parameters and EMW absorption properties of the EDCF products was confirmed respectively by adjusting the addition content and diameter of silica microspheres.As a primary attenuation mode,the dielectric loss originates from the comprehensive effect of conduction loss and polarization loss in S-band and C band,and the value is dominated by polarization loss in X band and Ku band,which is obviously greater than that of conduction loss.Furthermore,in all samples,the largest effective absorption bandwidth of EDCF-3 is 7.12 GHz under the thickness of 2.13 mm with the filling content of approximately 5 wt%,covering the whole Ku band.Meanwhile,the EDCF-7 sample with optimized pore volume and specific surface area achieves minimum reflection loss(RL_(min))of−58.08 dB at 16.86 GHz while the thickness is 1.27 mm.The outstanding research results not only provide a novel insight into enhancement of EMW absorption properties but also clarify the dominant dissipation mechanism for the porous carbon-based absorber from the perspective of objective experiments. 展开更多
关键词 porous carbon foam Electromagnetic wave absorption Adjustable pore structure Polarization loss Attenuation mechanism
在线阅读 下载PDF
N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries 被引量:10
11
作者 Yanfei Zeng Yudai Huang +7 位作者 Niantao Liu Xingchao Wang Yue Zhang Yong Guo Hong-Hui Wu Huixin Chen Xincun Tang Qiaobao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期727-735,共9页
Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical... Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical conductivity.To mitigate these issues,free-standing N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites(Si/C-ZIF-8/CNFs)are designed and synthesized by electrospinning and carbonization methods,which present greatly enhanced electrochemical properties for lithium-ion battery anodes.This particular structure alleviates the volume variation,promotes the formation of stable solid electrolyte interphase(SEI)film,and improves the electrical conductivity.As a result,the as-obtained free-standing Si/C-ZIF-8/CNFs electrode delivers a high reversible capacity of 945.5 mAh g^(-1) at 0.2 A g^(-1) with a capacity retention of 64% for 150 cycles,and exhibits a reversible capacity of 538.6 mA h g^(-1) at 0.5 A g^(-1) over 500 cycles.Moreover,the full cell composed of a freestanding Si/C-ZIF-8/CNFs anode and commercial LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2)(NCM)cathode shows a capacity of 63.4 mA h g^(-1) after 100 cycles at 0.2 C,which corresponds to a capacity retention of 60%.This rational design could provide a new path for the development of high-performance Si-based anodes. 展开更多
关键词 Pumpkin-like silicon/carbon composites N-doped porous carbon nanofibers Free-standing anode Lithium-ion batteries
在线阅读 下载PDF
Molten salt synthesis of porous carbon and its application in supercapacitors: A review 被引量:8
12
作者 Zhongya Pang Guangshi Li +4 位作者 Xiaolu Xiong Li Ji Qian Xu Xingli Zou Xionggang Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期622-640,I0016,共20页
Carbon materials have taken an important role in supercapacitor applications due to their outstanding features of large surface area,low price,and stable physicochemical properties.Considerable research efforts have b... Carbon materials have taken an important role in supercapacitor applications due to their outstanding features of large surface area,low price,and stable physicochemical properties.Considerable research efforts have been devoted to the development of novel synthesis strategy for the preparation of porous carbon materials in recent years.In particular,molten salt strategy represents an emerging and promising method,whereby it has shown great potential in achieving tailored production of porous carbon.It has been proved that the molten salt-assisted production of carbon via the direct carbonization of carbonaceous precursors is an effective approach.Furthermore,with the incorporation of electrochemical technology,molten salt synthesis of porous carbon has become flexible and diversiform.Here,this review focuses on the mainstream molten salt synthesis strategies for the production of porous carbon materials,which includes direct molten salt carbonization process,capture and electrochemical conversion of CO_(2)to value-added carbon,electrochemical exfoliation of graphite to graphene-based materials,and electrochemical etching of carbides to new-type carbide-derived carbon materials.The reaction mechanisms and recent advances for these strategies are reviewed and discussed systematically.The morphological and structural properties and capacitive performances of the obtained carbon materials are summarized to reveal their appealing points for supercapacitor applications.Moreover,the opportunities and challenges of the molten salt synthesis strategy for the preparation of carbon materials are also discussed in this review to provide inspiration to the future researches. 展开更多
关键词 Molten salt synthesis porous carbon CO_(2)conversion GRAPHENE Carbide-derived carbon
在线阅读 下载PDF
CoN_(x)C active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs as efficient multifunctional electrocatalyst for rechargeable Zn–air batteries 被引量:7
13
作者 Wenming Zhang Jingjing Chu +2 位作者 Shifeng Li Yanan Li Ling Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期323-332,共10页
In this work, a CoNxC active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs is prepared via a nucleation growth strategy and a pyrolysis process.The mat... In this work, a CoNxC active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs is prepared via a nucleation growth strategy and a pyrolysis process.The material displays excellent electrocatalytic activity for the oxygen reduction reaction, reaching a high limiting diffusion current density of -7.8 mA cm^(-2), outperforming metal–organic frameworks derived multifunctional electrocatalysts, and oxygen evolution reaction and hydrogen evolution reaction with low overpotentials of 380 and 107 mV, respectively. When the electrochemical properties are further evaluated, the electrocatalyst as an air cathode for Zn-air batteries exhibits a high cycling stability for63 h as well as a maximum power density of 308 mW cm^(-2), which is better than those for most Zn-air batteries reported to date. In addition, a power density of 152 mW cm^(-2) is provided by the solid-state Zn-air batteries, and the cycling stability is outstanding for 24 h. The remarkable electrocatalytic properties are attributed to the synergistic effect of the 3 D porous carbon nanofibers network and abundant inserted CoNxC active sites, which enable the fast transmission of ions and mass and simultaneously provide a large contact area for the electrode/electrolyte. 展开更多
关键词 Bacterial cellulose Bimetal-ZIFs CoNxC active sites 3D nitrogen-doped porous carbon nanofiber Zn-air batteries
在线阅读 下载PDF
Efficient conversion of fructose to 5-hydroxymethylfurfural over sulfated porous carbon catalyst 被引量:5
14
作者 Liang Wang Jian Zhang +2 位作者 Longfeng Zhu Xiangju Meng Feng-Shou Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期241-244,共4页
Sulfated porous carbon (PC-SO3H) catalyst was successfully synthesized from one-pot treatment of porous polydivinylbenzene in H2SO4 at 250 ℃, which exhibited very good catalytic performances in the production of 5-... Sulfated porous carbon (PC-SO3H) catalyst was successfully synthesized from one-pot treatment of porous polydivinylbenzene in H2SO4 at 250 ℃, which exhibited very good catalytic performances in the production of 5-hydroxymethylfurfural from fructose. 展开更多
关键词 sulfated porous carbon BIOMASS 5-HYDROXYMETHYLFURFURAL FRUCTOSE acid catalysts
在线阅读 下载PDF
Lignin derived hierarchical porous carbon with extremely suppressed polyselenide shuttling for high-capacity and long-cycle-life lithium-selenium batteries 被引量:6
15
作者 Pengfei Lu Fangyan Liu +3 位作者 Feng Zhou Jieqiong Qin Haodong Shi Zhong-Shuai Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期476-483,共8页
Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S... Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S cm^(-1))of selenium.However,the shuttling effect and capacity fading prevent their wide applications.Herein we report a low-cost strategy for scalable fabrication of lignin derived hierarchical porous carbon(LHPC)as a new high-loading Se host for high-capacity and long-term cycling Li-Se batteries in carbonate electrolyte.The resulting LHPC exhibits three-dimensional(3D)hierarchically porous structure,high specific surface area of 1696 m^(2) g^(-1),and hetero-atom doping(O,S),which can effectively confine the Se particles into the micropores,and meanwhile,offer effective chemical binding sites for selenides from hetero-atoms(O,S).As a result,our Li-Se batteries based on Se@LHPC demonstrate high capacity of 450 m Ah g^(-1) at 0.5 C after 500 cycles,with a low capacity fading rate of only 0.027%.The theoretical simulation confirmed the strong affinity of selenides on the O and S sites of LHPC effectively mitigating the Se losing.Therefore,our strategy of using lignin as the low-cost precursor of hierarchically porous carbon for high-loading Se host offers new opportunities for high-capacity and long-life Li-Se batteries. 展开更多
关键词 LIGNIN Hierarchical porous carbon Lithium selenium battery Long cycling stability Energy storage
在线阅读 下载PDF
Controllable synthesis of nitrogen-doped porous carbon from metal-polluted miscanthus waste boosting for supercapacitors 被引量:6
16
作者 Zuo Chen Man Zhang +4 位作者 Yuchen Wang Zhiyu Yang Di Hu Yetao Tang Kai Yan 《Green Energy & Environment》 SCIE CSCD 2021年第6期929-937,共9页
High-value reclamation of metal-polluted plants involved in phytoremediation is a big challenge.In this study,nitrogen-doped nanoporous carbon with large specific area of 2359.1 m^(2)g^(-1) is facilely fabricated from... High-value reclamation of metal-polluted plants involved in phytoremediation is a big challenge.In this study,nitrogen-doped nanoporous carbon with large specific area of 2359.1 m^(2)g^(-1) is facilely fabricated from metal-polluted miscanthus waste for efficient energy storage.The synergistic effect of KOH,urea and ammonia solution greatly improve the nitrogen quantity and surface area of the synthesized carbon.Electrodes fabricated with this carbon exhibit the excellent capacitance performance of 340.2 F g^(-1) at 0.5 A g^(-1) and a low combined resistance of 0.116Ω,which are competitive with most of previously reported carbon-based electrodes.In addition,the as-obtained carbon electrode shows a high specific capacitance retention of over 99.6%even after 5000 cycles.Furthermore,the symmetric supercapacitor fabricated using the synthesized carbon achieves a superior energy density of 25.3 Wh kg^(-1)(at 400 W kg^(-1))in 1 mol L^(-1) Na_(2)SO_(4)aqueous solution.This work provides an efficient route to upcycle metal-polluted plant waste for supercapacitor applications. 展开更多
关键词 Metal-polluted miscanthus High-value reclamation Supercapacitor Nitrogen-doped porous carbon Stability Electrochemical performance
在线阅读 下载PDF
Multi-heteroatom doped porous carbon derived from insect feces for capacitance-enhanced sodium-ion storage 被引量:5
17
作者 Chen Chen Ying Huang +3 位作者 Zhuoyue Meng Zhipeng Xu Panbo Liu Tiehu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期482-492,共11页
The large-scale application of sodium ion batteries(SIBs)is limited by economic and environmental factors.Here,we prepare multi-heteroatom self-doped hierarchical porous carbon(HHPC)with a honeycomb-like structure by ... The large-scale application of sodium ion batteries(SIBs)is limited by economic and environmental factors.Here,we prepare multi-heteroatom self-doped hierarchical porous carbon(HHPC)with a honeycomb-like structure by one-step carbonization method using high-yield and low-cost biomass silkworm excrement as a precursor.As an anode for SIB,HHPC-1100 exhibits a capacity of 331.7 mA h g^(-1) at 20 mA g^(-1),while it also reveals remarkable rate performance and stable long cycle capability due to its abundant pore structure and proper amount of hetero atom doping.Moreover,the synergistic effect of O,N,S,P co-doping in carbon materials on sodium ion adsorption is verified by the first-principles study,which provide a theoretical basis for the prominent electrochemical performance of the material. 展开更多
关键词 Heteroatom doped Anode Biomass Sodium storage porous carbon
在线阅读 下载PDF
Porous Carbon Architecture Assembled by Cross-Linked Carbon Leaves with Implanted Atomic Cobalt for High-Performance Li-S Batteries 被引量:7
18
作者 Ruirui Wang Renbing Wu +7 位作者 Chaofan Ding Ziliang Chen Hongbin Xu Yongfeng Liu Jichao Zhang Yuan Ha Ben Fei Hongge Pan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第10期98-112,共15页
The practical application of lithium-sulfur batteries is severely hampered by the poor conductivity,polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes.Herein,a hierarchi-cally porous three-di... The practical application of lithium-sulfur batteries is severely hampered by the poor conductivity,polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes.Herein,a hierarchi-cally porous three-dimension(3D)carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co-N4 has been deli-cately developed as an advanced sulfur host through a SiO_(2)-mediated zeolitic imidazolate framework-L(ZIF-L)strategy.The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation-delithi-ation process but also endow rich interface with full exposure of Co-N4 active sites to boost the lithium polysulfides adsorption and conversion.Owing to the accelerated kinetics and suppressed shuttle effect,the as-prepared sulfur cathode exhibits a superior electrochemical perfor-mance with a high reversible specific capacity of 695 mAh g^(−1) at 5 C and a low capacity fading rate of 0.053%per cycle over 500 cycles at 1 C.This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li-S batteries. 展开更多
关键词 Single-atom Co 3D porous carbon architecture Cathode Lithium–sulfur battery
在线阅读 下载PDF
N-doped porous carbon hollow microspheres encapsulated with iron-based nanocomposites as advanced bifunctional catalysts for rechargeable Zn-air battery 被引量:7
19
作者 Ran Hao Jin-Tao Ren +3 位作者 Xian-Wei Lv Wei Li Yu-Ping Liu Zhong-Yong Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期14-21,共8页
The design and development of low-cost,efficient,and stable bifunctional electrocatalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desirable for rechargeable metal-air batteries.In t... The design and development of low-cost,efficient,and stable bifunctional electrocatalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desirable for rechargeable metal-air batteries.In this work,N-doped porous hollow carbon spheres encapsulated with ultrafine Fe/Fe3O4 nanoparticles(FeOx@N-PHCS)were fabricated by impregnation and subsequent pyrolysis,using melamine-formaldehyde resin spheres as self-sacrifice templates and polydopamine as N and C sources.The sufficient adsorption of Fe3+on the polydopamine endowed the formation of Fe-Nx species upon high-temperature carbonization.The prepared FeOx@N-PHCS has advanced features of large specific surface area,porous hollow structure,high content of N dopants,sufficient Fe-Nx species and ultrafine FeOx nanoparticles.These features endow FeOx@N-PHCS with enhanced mass transfer and considerable active sites,leading to high activity and stability in catalyzing ORR and OER in alkaline electrolyte.Furthermore,the rechargeable Zn-air battery with FeOx@N-PHCS as air cathode catalyst exhibits a large peak power density,narrow charge-discharge potential gap and robust cycling stability,demonstrating the potential of the fabricated FeOx@N-PHCS as a promising electrode material for metal-air batteries.This new finding may open an avenue for rational design of bifunctional catalysts by integrating different active components within all-in-one catalyst for different electrochemical reactions. 展开更多
关键词 Bifunctional electrocatalysts Rechargeable metal-air batteries N-doped porous carbon nanostructure Fe/Fe3O4 nanoparticles Fe-Nx species
在线阅读 下载PDF
Functional porous carbon-based composite electrode materials for lithium secondary batteries 被引量:5
20
作者 Kai Zhang Zhe Hu Jun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期214-225,共12页
The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great break... The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries. 展开更多
关键词 porous carbons functional materials composite electrode materials synthetic method lithium secondary batteries
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部