期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Superficial performance and pore structure of palygorskite treated by hydrochloric acid 被引量:1
1
作者 刘义新 代伟伟 +1 位作者 王婷 陶涌 《Journal of Central South University of Technology》 EI 2006年第4期451-455,共5页
In order to amend the superficial performance of palygorskite and improve its application, the natural palygorskite(NP) was treated in the dipping and ionic exchanging experiments using 6mol/L hydrochloric acid treatm... In order to amend the superficial performance of palygorskite and improve its application, the natural palygorskite(NP) was treated in the dipping and ionic exchanging experiments using 6mol/L hydrochloric acid treatment. The performance and pore structure of the treated palygorskite(TP) were investigated by means of microscope analyses, FT-IR, XRF, BET-SSA and full hole distribution analytical techniques. The results show that the hydrochloric acid treatment can make the gracile and aggregating compact crystal bundles inside palygorskite clay broken and dispersed, the roughness of microcrystalline surface increases, which not only can dissolve or remove dolomite but vary the superficial performance of palygorskite to some degree. The specific surface area and pore volume increase a lot, while the mean pore size decreases. The pore structure of TP changes remarkably compared with that of NP after 6mol/L hydrochloric acid treatment, and the relevant physicochemical performance can be improved. 展开更多
关键词 PALYGORSKITE hydrochloric acid treatment BET-specific surface area full pore distribution adsorption-desorption isotherms
在线阅读 下载PDF
Understanding the Morphology and Mass Transport Resistance of Mesoporous Carbon-Supported PEMFC Based on Modeling Analysis
2
作者 Hao Deng Jia Liu Zhong-Jun Hou 《电化学(中英文)》 北大核心 2025年第5期37-61,共25页
Mesoporous carbon supports mitigate platinum(Pt)sulfonic poisoning through nanopore-confined Pt deposition,yet their morphological impacts on oxygen transport remain unclear.This study integrates carbon support morpho... Mesoporous carbon supports mitigate platinum(Pt)sulfonic poisoning through nanopore-confined Pt deposition,yet their morphological impacts on oxygen transport remain unclear.This study integrates carbon support morphology simulation with an enhanced agglomerate model to establish a mathematical framework elucidating pore evolution,Pt utilization,and oxygen transport in catalyst layers.Results demonstrate dominant local mass transport resistance governed by three factors:(1)active site density dictating oxygen flux;(2)ionomer film thickness defining shortest transport path;(3)ionomer-to-Pt surface area ratio modulating practical pathway length.At low ionomer-to-carbon(I/C)ratios,limited active sites elevate resistance(Factor 1 dominant).Higher I/C ratios improve the ionomer coverage but eventually thicken ionomer films,degrading transport(Factors 2–3 dominant).The results indicate that larger carbon particles result in a net increase in local transport resistance by reducing external surface area and increasing ionomer thickness.As the proportion of Pt situated in nanopores or the Pt mass fraction increases,elevated Pt density inside the nanopores exacerbates pore blockage.This leads to the increased transport resistance by reducing active sites,and increasing ionomer thickness and surface area.Lower Pt loading linearly intensifies oxygen flux resistance.The model underscores the necessity to optimize support morphology,Pt distribution,and ionomer content to prevent pore blockage while balancing catalytic activity and transport efficiency.These insights provide a systematic approach for designing high-performance mesoporous carbon catalysts. 展开更多
关键词 Mesoporous carbon support Electrochemical active surface area Platinum coverage Oxygen transport resistance pore volume distribution
在线阅读 下载PDF
Microscopic analysis of saturated soft clay in Pearl River Delta 被引量:3
3
作者 周晖 房营光 +1 位作者 谷任国 曾铖 《Journal of Central South University》 SCIE EI CAS 2011年第2期504-510,共7页
A series of researches were carried out for the soil samples in the Pearl River Delta under the action of consolidation loads,such as the quantitative analyses of the pore scale,shape and size distributions of micro-s... A series of researches were carried out for the soil samples in the Pearl River Delta under the action of consolidation loads,such as the quantitative analyses of the pore scale,shape and size distributions of micro-structure units,with an environmental scanning electron microscope (ESEM),a mercury intrusion analyzer and a mineral diffractometer. The experimental results show that the consolidation pressures remarkably change the pore sizes and distribution characteristics of the silt,thus changing its compressibility and permeability. This can be proved by the fact that,in the earlier stage with a consolidation pressure of p<200 kPa,the pore sizes are greater and the compressibility and permeability coefficients are larger. However,they rapidly decrease with the increase in consolidation pressure. And in the later stage with a consolidation pressure of p>200 kPa,the pore sizes are smaller and the compressibility and permeability coefficients are less. Therefore,the empirical formulas of compression coefficient and permeability coefficient vs consolidation load and average pore diameter are deduced. 展开更多
关键词 saturated soft soil Pearl River Delta (PRD) MICRO-STRUCTURE microscopic analysis pore distribution engineeringproperties
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部