The SnO2-polyaniline(SnO2-PAn) composite was prepared by microemulsion polymerization method using aniline,ammonium peroxodisulfate and SnO2 as starting materials.The SnO2-PAn composite was characterized by X-ray diff...The SnO2-polyaniline(SnO2-PAn) composite was prepared by microemulsion polymerization method using aniline,ammonium peroxodisulfate and SnO2 as starting materials.The SnO2-PAn composite was characterized by X-ray diffractometer,scanning electron microscope and electrochemical techniques.The results show that PAn in the composites is amorphous.PAn formed in the reaction is deposited preferentially on the SnO2 particles,giving a SnO2-PAn composite,in which SnO2 is coated with PAn.SnO2-PAn composite shows a reversible capacity of 657.6 mA·h/g and the capacity loss per cycle is only 0.092% after 80 cycles,suggesting that SnO2-PAn composite is a promising anode material for lithium ion batteries.展开更多
Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable p...Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable polyethylene glycol with organic monomers, resorcinol and formaldehyde and then subjected to pyrolization at 1 000 ℃. The influences of mass ratio of PEG to the theoretical yield of RF xerogel, m(PEG)/m(RF) and the (relative) molecular mass of PEG on the pore structure and electric double layer capacitance(EDLC) performance of PEG-RF carbon xerogels were investigated. The results show that PEG under different conditions leads to the difference of phase separation structure of the polymer blend and thus the change of pore structure of PEG-RF carbon xerogels. Specific surface area and capacity of PEG-RF carbon xerogels in 30% H2SO4 solution can reach (755 m2/g) and 150 F/g, respectively. Their surface can be fully utilized to form electric double layer. However, the pore structure differences of PEG-RF carbon xerogels result in their different EDLC performances. The distributed capacitance effect increases with decreasing the pore size of PEG-RF carbon xerogels.展开更多
基金Project(20376086) supported by the National Natural Science Foundation of ChinaProject(2005037700) supported by the Postdoctoral Science Foundation of China+1 种基金Project(07A058) supported by the Scientific Research Fund of Hunan Provincial Education DepartmentProject(07JJ3014) supported by Hunan Provincial Natural Science Foundation of China
文摘The SnO2-polyaniline(SnO2-PAn) composite was prepared by microemulsion polymerization method using aniline,ammonium peroxodisulfate and SnO2 as starting materials.The SnO2-PAn composite was characterized by X-ray diffractometer,scanning electron microscope and electrochemical techniques.The results show that PAn in the composites is amorphous.PAn formed in the reaction is deposited preferentially on the SnO2 particles,giving a SnO2-PAn composite,in which SnO2 is coated with PAn.SnO2-PAn composite shows a reversible capacity of 657.6 mA·h/g and the capacity loss per cycle is only 0.092% after 80 cycles,suggesting that SnO2-PAn composite is a promising anode material for lithium ion batteries.
文摘Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable polyethylene glycol with organic monomers, resorcinol and formaldehyde and then subjected to pyrolization at 1 000 ℃. The influences of mass ratio of PEG to the theoretical yield of RF xerogel, m(PEG)/m(RF) and the (relative) molecular mass of PEG on the pore structure and electric double layer capacitance(EDLC) performance of PEG-RF carbon xerogels were investigated. The results show that PEG under different conditions leads to the difference of phase separation structure of the polymer blend and thus the change of pore structure of PEG-RF carbon xerogels. Specific surface area and capacity of PEG-RF carbon xerogels in 30% H2SO4 solution can reach (755 m2/g) and 150 F/g, respectively. Their surface can be fully utilized to form electric double layer. However, the pore structure differences of PEG-RF carbon xerogels result in their different EDLC performances. The distributed capacitance effect increases with decreasing the pore size of PEG-RF carbon xerogels.