It is of significance to design of stable and cost-effective electrocatalyst for water splitting with high efficiency in an alkaline medium.The major obstacles for practical application of water splitting devices are ...It is of significance to design of stable and cost-effective electrocatalyst for water splitting with high efficiency in an alkaline medium.The major obstacles for practical application of water splitting devices are lack of high-efficiency and low-cost electrocatalysts with low overpotential for both HER and OER.In this paper,we report a NiFe alloy decorated NiCoO2 hollow polyhedron(denoted as Ni Fe–Ni Co O2)by using[NiFe(CN)6]- intercalated NiCo–LDH as precursor.As evidenced by the electrochemical active surface area,the resultant Ni Fe–Ni Co O2 composite shows unique hollow nanostructure,which can not only provide abundant mass transport channels,but also increase the contact area of the NiFe–Ni Co O2 material with the electrolyte.The overpotential(η)demand is 286 mV for OER and 102 mV for HER at the current density of 10 mA/cm2 in an alkaline medium of 1 M KOH for the NiFe/NiCoO2 composite.This work provides a new pathway for preparation of the highly efficient bifunctional electrocatalysts for water splitting.展开更多
Regularized Boolean operations have been widely used in 3D modeling systems. However, evaluating Boolean operations may be quite numerically unstable and time consuming, especially for iterated set operations. A novel...Regularized Boolean operations have been widely used in 3D modeling systems. However, evaluating Boolean operations may be quite numerically unstable and time consuming, especially for iterated set operations. A novel and unified technique is proposed in this paper for computing single and iterated set operations efficiently, robustly and exactly. An adaptive octree is combined with a nested constructive solid geometry (CSG) tree by this technique. The intersection handling is restricted to the cells in the octree where intersection actually occurs. Within those cells, a CSG tree template is instanced by the surfaces and the tree is converted to planebased binary space partitioning (BSP) for set evaluation; Moreover, the surface classification is restricted to the ceils in the octree where the surfaces only come from a model and are within the bounding-boxes of other polyhedrons. These two ways bring about the efficiency and scalability of the operations, in terms of runtime and memory. As all surfaces in such a cell have the same classification relation, they are classified as a whole. Robustness and exactness are achieved by integrating plane-based geometry representation with adaptive geometry predicate technique in intersection handling, and by applying divide-and-conquer arithmetic on surface classification. Experimental results demonstrate that the proposed approach can guarantee the robustness of Boolean computations and runs faster than other existing approaches.展开更多
基金supported by the National Nature Science Foundation of China (U1707603, 21625101, 21521005, U1507102)the National Key Research and Development Program of China (2017YFB0307303)+2 种基金the 973 program (Grant No. 2014CB932104)Beijing Natural Science Foundation (2182047)the Fundamental Research Funds for the Central Universities (ZY1709)
文摘It is of significance to design of stable and cost-effective electrocatalyst for water splitting with high efficiency in an alkaline medium.The major obstacles for practical application of water splitting devices are lack of high-efficiency and low-cost electrocatalysts with low overpotential for both HER and OER.In this paper,we report a NiFe alloy decorated NiCoO2 hollow polyhedron(denoted as Ni Fe–Ni Co O2)by using[NiFe(CN)6]- intercalated NiCo–LDH as precursor.As evidenced by the electrochemical active surface area,the resultant Ni Fe–Ni Co O2 composite shows unique hollow nanostructure,which can not only provide abundant mass transport channels,but also increase the contact area of the NiFe–Ni Co O2 material with the electrolyte.The overpotential(η)demand is 286 mV for OER and 102 mV for HER at the current density of 10 mA/cm2 in an alkaline medium of 1 M KOH for the NiFe/NiCoO2 composite.This work provides a new pathway for preparation of the highly efficient bifunctional electrocatalysts for water splitting.
基金supported by the Natural Science Foundation of China under Grant No.61202154 and No.61133009the National Basic Research Project of China under Grant No.2011CB302203+2 种基金Shanghai Pujiang Program under Grant No.13PJ1404500the Science and Technology Commission of Shanghai Municipality Program under Grant No.13511505000the Open Project Program of the State Key Lab of CAD&CG of Zhejiang University under Grant No.A1401
文摘Regularized Boolean operations have been widely used in 3D modeling systems. However, evaluating Boolean operations may be quite numerically unstable and time consuming, especially for iterated set operations. A novel and unified technique is proposed in this paper for computing single and iterated set operations efficiently, robustly and exactly. An adaptive octree is combined with a nested constructive solid geometry (CSG) tree by this technique. The intersection handling is restricted to the cells in the octree where intersection actually occurs. Within those cells, a CSG tree template is instanced by the surfaces and the tree is converted to planebased binary space partitioning (BSP) for set evaluation; Moreover, the surface classification is restricted to the ceils in the octree where the surfaces only come from a model and are within the bounding-boxes of other polyhedrons. These two ways bring about the efficiency and scalability of the operations, in terms of runtime and memory. As all surfaces in such a cell have the same classification relation, they are classified as a whole. Robustness and exactness are achieved by integrating plane-based geometry representation with adaptive geometry predicate technique in intersection handling, and by applying divide-and-conquer arithmetic on surface classification. Experimental results demonstrate that the proposed approach can guarantee the robustness of Boolean computations and runs faster than other existing approaches.