Low-carbon process for resource utilization of polycyclic aromatic hydrocarbons(PAHs)in zeolitecatalyzed processes,geared to carbon neutrality-a prominent trend throughout human activities,has been bottlenecked by the...Low-carbon process for resource utilization of polycyclic aromatic hydrocarbons(PAHs)in zeolitecatalyzed processes,geared to carbon neutrality-a prominent trend throughout human activities,has been bottlenecked by the lack of a complete mechanistic understanding of coking and decoking chemistry,involving the speciation and molecular evolution of PAHs,the plethora of which causes catalyst deactivation and forces regeneration,rendering significant CO_(2) emission.Herein,by exploiting the high-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry(MALDI FT-ICR MS),we unveil the missing fingerprints of the mechanistic pathways for both formation and decomposition of cross-linked cage-passing PAHs for SAPO-34-catalyzed,industrially relevant methanol-to-olefins(MTO)as a model reaction.Notable is the molecule-resolved symmetrical signature:their speciation originates exclusively from the direct coupling of in-cage hydrocarbon pool(HCP)species,whereas water-promoted decomposition of cage-passing PAHs initiates with selective cracking of inter-cage local structures at 8-rings followed by deep aromatic steam reforming.Molecular deciphering the reversibly dynamic evolution trajectory(fate)of full-spectrum aromatic hydrocarbons and fulfilling the real-time quantitative carbon resource footprints advance the fundamental knowledge of deactivation and regeneration phenomena(decay and recovery motifs of autocatalysis)and disclose the underlying mechanisms of especially the chemistry of coking and decoking in zeolite catalysis.The positive yet divergent roles of water in these two processes are disentangled.These unprecedented insights ultimately lead us to a steam regeneration strategy with valuable CO and H_(2) as main products,negligible CO_(2) emission in steam reforming and full catalyst activity recovery,which further proves feasible in other important chemical processes,promising to be a sustainable and potent approach that contributes to carbon-neutral chemical industry.展开更多
真菌漆酶可以高效转化多环芳烃(PAHs),因此,产漆酶真菌在PAHs污染土壤修复中极具应用前景。根据漆酶可将愈创木酚氧化为红色物质的特性,成功从土壤中筛选出一株能够分泌漆酶的真菌菌株F-1,初步鉴定该菌为疣孢漆斑菌(Myrothecium verruca...真菌漆酶可以高效转化多环芳烃(PAHs),因此,产漆酶真菌在PAHs污染土壤修复中极具应用前景。根据漆酶可将愈创木酚氧化为红色物质的特性,成功从土壤中筛选出一株能够分泌漆酶的真菌菌株F-1,初步鉴定该菌为疣孢漆斑菌(Myrothecium verrucaria)。通过Plackett-Burman试验对菌株F-1的产酶能力进行了分析,发现特定培养条件组合可将其酶活提高近300倍,达5628 U L-1,表明F-1的漆酶活性受到环境条件的显著影响。应用菌株F-1对PAHs污染土壤进行了初步修复研究,结果表明,接种F-1对菲、荧蒽、芘、苯并(a)蒽、屈、苯并(b)荧蒽、苯并(k)荧蒽、苯并(a)芘、二苯并(a,h)蒽、苯并(g,h,i)苝、茚苯(1,2,3-cd)芘等11种PAHs均有不同程度的降解,提示产漆酶真菌在PAHs污染土壤修复中的应用潜力。展开更多
基金financial support from the National Natural Science Foundation of China(21991092,21991090,22022202,21972142,21902153,21974138)the Chinese Academy of Sciences(QYZDY-SSW-SC024)the Dalian Institute of Chemical Physics(DICP I201926,DICP I201947)。
文摘Low-carbon process for resource utilization of polycyclic aromatic hydrocarbons(PAHs)in zeolitecatalyzed processes,geared to carbon neutrality-a prominent trend throughout human activities,has been bottlenecked by the lack of a complete mechanistic understanding of coking and decoking chemistry,involving the speciation and molecular evolution of PAHs,the plethora of which causes catalyst deactivation and forces regeneration,rendering significant CO_(2) emission.Herein,by exploiting the high-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry(MALDI FT-ICR MS),we unveil the missing fingerprints of the mechanistic pathways for both formation and decomposition of cross-linked cage-passing PAHs for SAPO-34-catalyzed,industrially relevant methanol-to-olefins(MTO)as a model reaction.Notable is the molecule-resolved symmetrical signature:their speciation originates exclusively from the direct coupling of in-cage hydrocarbon pool(HCP)species,whereas water-promoted decomposition of cage-passing PAHs initiates with selective cracking of inter-cage local structures at 8-rings followed by deep aromatic steam reforming.Molecular deciphering the reversibly dynamic evolution trajectory(fate)of full-spectrum aromatic hydrocarbons and fulfilling the real-time quantitative carbon resource footprints advance the fundamental knowledge of deactivation and regeneration phenomena(decay and recovery motifs of autocatalysis)and disclose the underlying mechanisms of especially the chemistry of coking and decoking in zeolite catalysis.The positive yet divergent roles of water in these two processes are disentangled.These unprecedented insights ultimately lead us to a steam regeneration strategy with valuable CO and H_(2) as main products,negligible CO_(2) emission in steam reforming and full catalyst activity recovery,which further proves feasible in other important chemical processes,promising to be a sustainable and potent approach that contributes to carbon-neutral chemical industry.
文摘真菌漆酶可以高效转化多环芳烃(PAHs),因此,产漆酶真菌在PAHs污染土壤修复中极具应用前景。根据漆酶可将愈创木酚氧化为红色物质的特性,成功从土壤中筛选出一株能够分泌漆酶的真菌菌株F-1,初步鉴定该菌为疣孢漆斑菌(Myrothecium verrucaria)。通过Plackett-Burman试验对菌株F-1的产酶能力进行了分析,发现特定培养条件组合可将其酶活提高近300倍,达5628 U L-1,表明F-1的漆酶活性受到环境条件的显著影响。应用菌株F-1对PAHs污染土壤进行了初步修复研究,结果表明,接种F-1对菲、荧蒽、芘、苯并(a)蒽、屈、苯并(b)荧蒽、苯并(k)荧蒽、苯并(a)芘、二苯并(a,h)蒽、苯并(g,h,i)苝、茚苯(1,2,3-cd)芘等11种PAHs均有不同程度的降解,提示产漆酶真菌在PAHs污染土壤修复中的应用潜力。