An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator...An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.展开更多
Since the research of flare slamming prediction is seldom when parametric rolling happens, we present an efficient approximation method for flare slamming analysis of large container ships in parametric rolling condit...Since the research of flare slamming prediction is seldom when parametric rolling happens, we present an efficient approximation method for flare slamming analysis of large container ships in parametric rolling conditions. We adopt a 6-DOF weakly nonlinear time domain model to predict the ship motions of parametric rolling conditions. Unlike previous flare slamming analysis, our proposed method takes roll motion into account to calculate the impact angle and relative vertical velocity between ship sections on the bow flare and wave surface. We use the Wagner model to analyze the slamming impact forces and the slamming occurrence probability. Through numerical simulations, we investigate the maximum flare slamming pressures of a container ship for different speeds and wave conditions. To further clarify the mechanism of flare slamming phenomena in parametric rolling conditions, we also conduct real-time simulations to determine the relationship between slamming pressure and 3-DOF motions, namely roll, pitch, and heave.展开更多
In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation ...In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation method (HWAM). To prove the applicabifity of the HWAM, a more general applicability theorem on an approximation method (AM) for an operator equation Ax = y is proved first. As an application, applicability of the HWAM is obtained. Fhrthermore, four steps to use the HWAM are listed and three numerical examples are given in order to illustrate the effectiveness of the method.展开更多
The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of ...The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.展开更多
A anified plasma sheath model and its potential equation are proposed. Any higher-ordor-approximation analytical solutions for the unified plasma sheath potential equa tiop are derived by double decomposition method.
We show that if λ1 , λ2 , λ3 are non-zero real numbers, not all of the same sign, η is real and λ1 /λ2 is irrational, then there are infinitely many ordered triples of primes (p1 , p2 , p3 ) for which |λ1 p1 + ...We show that if λ1 , λ2 , λ3 are non-zero real numbers, not all of the same sign, η is real and λ1 /λ2 is irrational, then there are infinitely many ordered triples of primes (p1 , p2 , p3 ) for which |λ1 p1 + λ2 p2 + λ3 p2 3 + η| < (max pj )- 1/40 (log max pj ) 4 .展开更多
In this paper, a new algorithm-approximate penalty function method is designed, which can be used to solve a bilevel optimization problem with linear constrained function. In this kind of bilevel optimization problem....In this paper, a new algorithm-approximate penalty function method is designed, which can be used to solve a bilevel optimization problem with linear constrained function. In this kind of bilevel optimization problem. the evaluation of the objective function is very difficult, so that only their approximate values can be obtained. This algorithm is obtained by combining penalty function method and approximation in bilevel programming. The presented algorithm is completely different from existing methods. That convergence for this algorithm is proved.展开更多
This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions an...This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.展开更多
Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection ope...Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.展开更多
The Adomian decomposition method (ADM) and Pade approximants are combined to solve the well-known Blaszak-Marciniak lattice, which has rich mathematical structures and many important applications in physics and math...The Adomian decomposition method (ADM) and Pade approximants are combined to solve the well-known Blaszak-Marciniak lattice, which has rich mathematical structures and many important applications in physics and mathematics. In some cases, the truncated series solution of ADM is adequate only in a small region when the exact solution is not reached. To overcome the drawback, the Pade approximants, which have the advantage in turning the polynomials approximation into a rational function, are applied to the series solution to improve the accuracy and enlarge the convergence domain. By using the ADM-Pade technique, the soliton solutions of the Blaszak-Marciniak lattice are constructed with better accuracy and better convergence than by using the ADM alone. Numerical and figurative illustrations show that it is a promising tool for solving nonlinear problems.展开更多
We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a cons...We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a constant state is small. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. As an imme- diate byproduct, the usual Lp - L2(1 〈 p 〈 2) type of the optimal decay rate follow without requiring that the Lp norm of initial data is small.展开更多
The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parame...The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parameter which provides a convenient way to control the convergence region and rate of the series solutions. Through errors analysis and numerical simulation, we can see the approximate solution is very close to the exact solution.展开更多
In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The pr...In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial. An illustrative example shows that the genera]ised two-dimensional DTM is effective for the coupled equations.展开更多
This paper is devoted to the study of approximation of the solution for the differential equation whose coefficients are almost period functions. To this end the authors establish the estimation of the solution of gen...This paper is devoted to the study of approximation of the solution for the differential equation whose coefficients are almost period functions. To this end the authors establish the estimation of the solution of general linear differential equation for infinite interval case. For finite interval case, this equation was investigated by G. Tamarkin([1]) applying the Picard method of successive approximation.展开更多
The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal cohere...The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal coherence, accounting for infinite series reduction solutions to the original equation and general formulas of similarity reduction equations. Painleve Ⅱ type equations, hyperbolic secant and Jacobi elliptic function solutions are obtained for zeroorder similarity reduction equations. Higher order similarity reduction equations are linear variable coefficient ordinary differential equations.展开更多
In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step proce...In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step procedure is used to acquire Jacobi elliptic function solutions to these similarity equations, which generate the truncated series solutions to the original perturbed Boussinesq equation. Aside from some singular area, the series solutions are convergent when the perturbation parameter is diminished.展开更多
An approximate analytical solution in the form of a rapidly convergent series for tracing light rays through an inhomogeneous graded index medium is developed,using the multi-step differential transform method based o...An approximate analytical solution in the form of a rapidly convergent series for tracing light rays through an inhomogeneous graded index medium is developed,using the multi-step differential transform method based on the classical differential transformation method.Numerical results are compared to those obtained by the fourth-order Runge-Kutta method to illustrate the precision and effectiveness of the proposed method.Results are given in explicit and graphical forms.展开更多
This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Und...This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.展开更多
This paper generalizes the basic principle of multiplier-enlargement approach to approximating any nonbounded continuous functions with positive linear operators, and as an example, Bernstein polynomial operators are ...This paper generalizes the basic principle of multiplier-enlargement approach to approximating any nonbounded continuous functions with positive linear operators, and as an example, Bernstein polynomial operators are analysed and studied. This paper gives a certain theorem as a general rule to approximate any nonbounded continuous functions.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172093 and 11372102)the Hunan Provincial Innovation Foundation for Postgraduate,China(Grant No.CX2012B159)
文摘An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.
基金supported by the ChinaMinistry of Education Key Research Project "KSHIP-II Project"(Knowledge-based Ship Design Hyper-Integrated Platform)No.GKZY010004the National Key Basic Research Program of China No.2014CB046804
文摘Since the research of flare slamming prediction is seldom when parametric rolling happens, we present an efficient approximation method for flare slamming analysis of large container ships in parametric rolling conditions. We adopt a 6-DOF weakly nonlinear time domain model to predict the ship motions of parametric rolling conditions. Unlike previous flare slamming analysis, our proposed method takes roll motion into account to calculate the impact angle and relative vertical velocity between ship sections on the bow flare and wave surface. We use the Wagner model to analyze the slamming impact forces and the slamming occurrence probability. Through numerical simulations, we investigate the maximum flare slamming pressures of a container ship for different speeds and wave conditions. To further clarify the mechanism of flare slamming phenomena in parametric rolling conditions, we also conduct real-time simulations to determine the relationship between slamming pressure and 3-DOF motions, namely roll, pitch, and heave.
基金support by the NSFC(11371012,11401359,11471200)the FRF for the Central Universities(GK201301007)the NSRP of Shaanxi Province(2014JQ1010)
文摘In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation method (HWAM). To prove the applicabifity of the HWAM, a more general applicability theorem on an approximation method (AM) for an operator equation Ax = y is proved first. As an application, applicability of the HWAM is obtained. Fhrthermore, four steps to use the HWAM are listed and three numerical examples are given in order to illustrate the effectiveness of the method.
基金Sponsored by the Ministerial Level Advanced Research Foundation (010896367)
文摘The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.
文摘A anified plasma sheath model and its potential equation are proposed. Any higher-ordor-approximation analytical solutions for the unified plasma sheath potential equa tiop are derived by double decomposition method.
基金Supported by the NNSF of China(11071070)Supported by the Science Research Plan of Education Department of Henan Province(2011B110002)
文摘We show that if λ1 , λ2 , λ3 are non-zero real numbers, not all of the same sign, η is real and λ1 /λ2 is irrational, then there are infinitely many ordered triples of primes (p1 , p2 , p3 ) for which |λ1 p1 + λ2 p2 + λ3 p2 3 + η| < (max pj )- 1/40 (log max pj ) 4 .
文摘In this paper, a new algorithm-approximate penalty function method is designed, which can be used to solve a bilevel optimization problem with linear constrained function. In this kind of bilevel optimization problem. the evaluation of the objective function is very difficult, so that only their approximate values can be obtained. This algorithm is obtained by combining penalty function method and approximation in bilevel programming. The presented algorithm is completely different from existing methods. That convergence for this algorithm is proved.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.10735030,10475055,10675065 and 90503006)the National Basic Research Program of China(Grant No.2007CB814800)
文摘This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.
基金supported by the National Natural Science Foundation of China(Grant No.11101454)the Natural Science Foundation of Chongqing CSTC,China(Grant No.cstc2014jcyjA00005)the Program of Innovation Team Project in University of Chongqing City,China(Grant No.KJTD201308)
文摘Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.
基金Project supported by the National Key Basic Research Project of China (Grant No 2004CB318000)the National Natural Science Foundation of China (Grant Nos 10771072 and 10735030)Shanghai Leading Academic Discipline Project of China (Grant No B412)
文摘The Adomian decomposition method (ADM) and Pade approximants are combined to solve the well-known Blaszak-Marciniak lattice, which has rich mathematical structures and many important applications in physics and mathematics. In some cases, the truncated series solution of ADM is adequate only in a small region when the exact solution is not reached. To overcome the drawback, the Pade approximants, which have the advantage in turning the polynomials approximation into a rational function, are applied to the series solution to improve the accuracy and enlarge the convergence domain. By using the ADM-Pade technique, the soliton solutions of the Blaszak-Marciniak lattice are constructed with better accuracy and better convergence than by using the ADM alone. Numerical and figurative illustrations show that it is a promising tool for solving nonlinear problems.
基金Supported by National Natural Science Foundation of China(11271305,11161011)Science and Technology Foundation of Guizhou Province of China(LKS[2012]11,LKS[2013]03,LKS[2013]05)
文摘We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a constant state is small. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. As an imme- diate byproduct, the usual Lp - L2(1 〈 p 〈 2) type of the optimal decay rate follow without requiring that the Lp norm of initial data is small.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10735030)National Basic Research Program of China (Grant No. 2007CB814800)+1 种基金Ningbo Natural Science Foundation (Grant No. 2008A610017)K.C. Wong Magna Fund in Ningbo University
文摘The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parameter which provides a convenient way to control the convergence region and rate of the series solutions. Through errors analysis and numerical simulation, we can see the approximate solution is very close to the exact solution.
基金Project supported by the Natural Science Foundation of Inner Mongolia of China (Grant No. 20080404MS0104)the Young Scientists Fund of Inner Mongolia University of China (Grant No. ND0811)
文摘In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial. An illustrative example shows that the genera]ised two-dimensional DTM is effective for the coupled equations.
文摘This paper is devoted to the study of approximation of the solution for the differential equation whose coefficients are almost period functions. To this end the authors establish the estimation of the solution of general linear differential equation for infinite interval case. For finite interval case, this equation was investigated by G. Tamarkin([1]) applying the Picard method of successive approximation.
基金supported by the National Natural Science Foundations of China (Grant Nos 10735030,10475055,10675065 and 90503006)National Basic Research Program of China (Grant No 2007CB814800)+2 种基金PCSIRT (Grant No IRT0734)the Research Fund of Postdoctoral of China (Grant No 20070410727)Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070248120)
文摘The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal coherence, accounting for infinite series reduction solutions to the original equation and general formulas of similarity reduction equations. Painleve Ⅱ type equations, hyperbolic secant and Jacobi elliptic function solutions are obtained for zeroorder similarity reduction equations. Higher order similarity reduction equations are linear variable coefficient ordinary differential equations.
基金Project supported by the National Natural Science Foundation of China(Grant No.11505094)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20150984)
文摘In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step procedure is used to acquire Jacobi elliptic function solutions to these similarity equations, which generate the truncated series solutions to the original perturbed Boussinesq equation. Aside from some singular area, the series solutions are convergent when the perturbation parameter is diminished.
文摘An approximate analytical solution in the form of a rapidly convergent series for tracing light rays through an inhomogeneous graded index medium is developed,using the multi-step differential transform method based on the classical differential transformation method.Numerical results are compared to those obtained by the fourth-order Runge-Kutta method to illustrate the precision and effectiveness of the proposed method.Results are given in explicit and graphical forms.
基金supported by the Natural Science Foundation of China(11801108)the Natural Science Foundation of Guangdong Province(2021A1515010314)the Science and Technology Planning Project of Guangzhou City(202201010111)。
文摘This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.
文摘This paper generalizes the basic principle of multiplier-enlargement approach to approximating any nonbounded continuous functions with positive linear operators, and as an example, Bernstein polynomial operators are analysed and studied. This paper gives a certain theorem as a general rule to approximate any nonbounded continuous functions.