A cross-linkable fluorinated poly (ether ether ketone) (FPEEK) was synthesized for the fabrication of arrayed waveguide grating (AWG) multiplexer. The results of thermal gravimetric analysis (TGA) and near-infrared ab...A cross-linkable fluorinated poly (ether ether ketone) (FPEEK) was synthesized for the fabrication of arrayed waveguide grating (AWG) multiplexer. The results of thermal gravimetric analysis (TGA) and near-infrared absorption spectrum show that the materials have high thermal stability and high optical transparency in the infrared communication region. The refractive index of FPEEK can be controlled easily by changing the fluorine content of the materials. The 32-channel AWG multiplexer is fabricated using the FPEEK and oxygen reactive ion etching technology. The AWG multiplexer exhibits that the insertion loss is from 12.8 to 17.8 dB and the channel crosstalk is less than-20 dB. The wavelength channel spacing and the center wavelength are 0.8nm and 1548nm, respectively.展开更多
以提升熔融沉积成型(FDM)增材制造连续玻璃纤维增强聚醚醚酮(CGF/PEEK)复合材料的冲击性能为目的,设计了系统的响应面试验,试验过程包括单因素试验、Plackett-Burman(PB)析因试验、Box-Behnken Design(BBD)响应面试验,研究了道间距、保...以提升熔融沉积成型(FDM)增材制造连续玻璃纤维增强聚醚醚酮(CGF/PEEK)复合材料的冲击性能为目的,设计了系统的响应面试验,试验过程包括单因素试验、Plackett-Burman(PB)析因试验、Box-Behnken Design(BBD)响应面试验,研究了道间距、保温舱温度、打印温度、打印层厚等工艺参数对CGF/PEEK复合材料FDM成型试样冲击性能的影响规律。通过单因素试验,界定各影响因素的取值范围,以确保后续试验的高效性和准确性;通过PB析因试验,筛选出对CGF/PEEK复合材料冲击性能有显著影响的工艺参数,明确各工艺参数之间的相互作用;采用BBD响应面试验设计,构建了多因素与响应变量之间的数学模型,探究最优工艺参数组合,并进行试验验证。结果表明,各工艺参数对试样冲击性能影响程度大小排序为打印层厚>打印温度>道间距>保温舱温度;选择合适的工艺参数组合可以提高CGF/PEEK试样的冲击性能,并预测出最优工艺参数组合,即道间距为0.55 mm、保温舱温度为90℃、打印温度为438℃、打印层厚0.57 mm时,模型所预测的最大冲击强度为265 k J/m^(2)。为验证模型预测的准确性,进行了试验验证。结果表明在最优工艺参数组合下,CGF/PEEK试样最大冲击强度达到266 k J/m^(2),与模型预测值吻合,验证了模型的可靠性。展开更多
文摘A cross-linkable fluorinated poly (ether ether ketone) (FPEEK) was synthesized for the fabrication of arrayed waveguide grating (AWG) multiplexer. The results of thermal gravimetric analysis (TGA) and near-infrared absorption spectrum show that the materials have high thermal stability and high optical transparency in the infrared communication region. The refractive index of FPEEK can be controlled easily by changing the fluorine content of the materials. The 32-channel AWG multiplexer is fabricated using the FPEEK and oxygen reactive ion etching technology. The AWG multiplexer exhibits that the insertion loss is from 12.8 to 17.8 dB and the channel crosstalk is less than-20 dB. The wavelength channel spacing and the center wavelength are 0.8nm and 1548nm, respectively.
文摘以提升熔融沉积成型(FDM)增材制造连续玻璃纤维增强聚醚醚酮(CGF/PEEK)复合材料的冲击性能为目的,设计了系统的响应面试验,试验过程包括单因素试验、Plackett-Burman(PB)析因试验、Box-Behnken Design(BBD)响应面试验,研究了道间距、保温舱温度、打印温度、打印层厚等工艺参数对CGF/PEEK复合材料FDM成型试样冲击性能的影响规律。通过单因素试验,界定各影响因素的取值范围,以确保后续试验的高效性和准确性;通过PB析因试验,筛选出对CGF/PEEK复合材料冲击性能有显著影响的工艺参数,明确各工艺参数之间的相互作用;采用BBD响应面试验设计,构建了多因素与响应变量之间的数学模型,探究最优工艺参数组合,并进行试验验证。结果表明,各工艺参数对试样冲击性能影响程度大小排序为打印层厚>打印温度>道间距>保温舱温度;选择合适的工艺参数组合可以提高CGF/PEEK试样的冲击性能,并预测出最优工艺参数组合,即道间距为0.55 mm、保温舱温度为90℃、打印温度为438℃、打印层厚0.57 mm时,模型所预测的最大冲击强度为265 k J/m^(2)。为验证模型预测的准确性,进行了试验验证。结果表明在最优工艺参数组合下,CGF/PEEK试样最大冲击强度达到266 k J/m^(2),与模型预测值吻合,验证了模型的可靠性。