In this work,a novel alcohol alkali hydrolysis method was explored for the preparation of terephthalic acid(TPA)from waste polyethylene terephthalate(PET).First,a series of single factor experiments on the depolymeriz...In this work,a novel alcohol alkali hydrolysis method was explored for the preparation of terephthalic acid(TPA)from waste polyethylene terephthalate(PET).First,a series of single factor experiments on the depolymerization rate of waste PET bottles and the yield of TPA were conducted to determine the optimized experimental conditions,in terms of reaction time,reaction temperature,dosage of ethylene glycol and sodium bicarbonate,amount of distilled water and stirring rate.Then IR spectra and elemental analysis were carried out for the characterization of obtained product.Under optimal experimental conditions,over 98%PET can be depolymerized into the target product(TPA)and the purity and yield of TPA are over 97%and 94%,respectively.Both the experimental and analytical results support a feasible process for the preparation of TPA from waste PET.It is expected that this alcohol alkali hydrolysis method can promise an effective way for the sustainable recycling of waste PET.展开更多
Poly(ethylene- co -chlorotrifluoroethylene) with a 1∶1 molar ratio of ethylene and chlorotrifluoroethylene in composition, PECTFE, is a statistically alternating copolymer widely used in cable coating industry. PECTF...Poly(ethylene- co -chlorotrifluoroethylene) with a 1∶1 molar ratio of ethylene and chlorotrifluoroethylene in composition, PECTFE, is a statistically alternating copolymer widely used in cable coating industry. PECTFE has been commonly characterized as a semicrystalline polymer with crystals melting at 238 ℃. Differential scanning calorimetry, thermal mechanical analysis and dynamic mechanical analysis indicated that PECTFE undergoes a reversible solid-solid transition during cooling and heating in the temperature range between 100 ℃ and 200 ℃. Based on detailed structural analysis via wide angle X-ray diffraction and electron diffraction techniques, we proposed that PECTFE possesses a hexagonal phase above 200 ℃( a =0 60 nm, c =0 49 nm) and an orthorhombic phase( a =0 99 nm, b =0 57 nm, c =0 49 nm) at room temperature.展开更多
Methoxy poly(ethylene glycol)-poly(D,L-lactide) block copolymers (PEG-PLA) were prepared through ring-opening polymerization.The oil in water suspension method was used to prepare block copolymer micelles. The critica...Methoxy poly(ethylene glycol)-poly(D,L-lactide) block copolymers (PEG-PLA) were prepared through ring-opening polymerization.The oil in water suspension method was used to prepare block copolymer micelles. The critical micelle concentration (CMC) by fluorescence spectroscopy was 0.0056 mg·ml -1 . The physical state of the inner core region of micelles was characterized with 1HNMR. The size of indomethacin (IMC) loaded micelles measured by dynamic light scattering (DLS) showed narrow monodisperse size distribution and the average diameters were less than 50 nm. In addition, the nanoparticles with relatively high drug loading content (DLC) were obtained.展开更多
基金Project(2016TP1007)supported by the Hunan Provincial Science and Technology Plan,China
文摘In this work,a novel alcohol alkali hydrolysis method was explored for the preparation of terephthalic acid(TPA)from waste polyethylene terephthalate(PET).First,a series of single factor experiments on the depolymerization rate of waste PET bottles and the yield of TPA were conducted to determine the optimized experimental conditions,in terms of reaction time,reaction temperature,dosage of ethylene glycol and sodium bicarbonate,amount of distilled water and stirring rate.Then IR spectra and elemental analysis were carried out for the characterization of obtained product.Under optimal experimental conditions,over 98%PET can be depolymerized into the target product(TPA)and the purity and yield of TPA are over 97%and 94%,respectively.Both the experimental and analytical results support a feasible process for the preparation of TPA from waste PET.It is expected that this alcohol alkali hydrolysis method can promise an effective way for the sustainable recycling of waste PET.
文摘Poly(ethylene- co -chlorotrifluoroethylene) with a 1∶1 molar ratio of ethylene and chlorotrifluoroethylene in composition, PECTFE, is a statistically alternating copolymer widely used in cable coating industry. PECTFE has been commonly characterized as a semicrystalline polymer with crystals melting at 238 ℃. Differential scanning calorimetry, thermal mechanical analysis and dynamic mechanical analysis indicated that PECTFE undergoes a reversible solid-solid transition during cooling and heating in the temperature range between 100 ℃ and 200 ℃. Based on detailed structural analysis via wide angle X-ray diffraction and electron diffraction techniques, we proposed that PECTFE possesses a hexagonal phase above 200 ℃( a =0 60 nm, c =0 49 nm) and an orthorhombic phase( a =0 99 nm, b =0 57 nm, c =0 49 nm) at room temperature.
文摘Methoxy poly(ethylene glycol)-poly(D,L-lactide) block copolymers (PEG-PLA) were prepared through ring-opening polymerization.The oil in water suspension method was used to prepare block copolymer micelles. The critical micelle concentration (CMC) by fluorescence spectroscopy was 0.0056 mg·ml -1 . The physical state of the inner core region of micelles was characterized with 1HNMR. The size of indomethacin (IMC) loaded micelles measured by dynamic light scattering (DLS) showed narrow monodisperse size distribution and the average diameters were less than 50 nm. In addition, the nanoparticles with relatively high drug loading content (DLC) were obtained.