Millimeter wave(mmWave) communications of unmanned aerial vehicles(UAVs) have drawn dramatic attentions for its flexibility on a variety of applications.Recently,channel tracking base on the spatial features has been ...Millimeter wave(mmWave) communications of unmanned aerial vehicles(UAVs) have drawn dramatic attentions for its flexibility on a variety of applications.Recently,channel tracking base on the spatial features has been proposed to solve the problem of beam misalignments due to the UAV navigation.However,unstable beam pointing caused by the non-ideal beam tracking environment may impact the performance of mmWave systems significantly.In this paper,an improved beamforming method is presented to overcome this shortcoming.Firstly,the effect of the beam deviation is analyzed through the establishment of the equivalent data rate.Then,combining the quantification of spatial angle and the improved orthogonal matching pursuit(OMP) algorithm,an optimized beam corresponding to the beam deviation is obtained.Simulation results show that the optimized beam of the proposed approach can effectively improve the spectral efficiency without improving the complexity when the beam pointing is unstable.展开更多
This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in differe...This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in different environmental conditions.We propose a robust FLC with low computational complexity by reducing the number of membership functions and rules.To optimize the performance of the FLC,metaheuristic algorithms are employed to determine the parameters of the FLC.We evaluate the proposed FLC in various panel configurations under different environmental conditions.The results indicate that the proposed FLC can easily adapt to various panel configurations and perform better than other benchmarks in terms of enhanced stability,responsiveness,and power transfer under various scenarios.展开更多
A photovoltaic array is environmentally friendly and a source of unlimited energy generation.However,it is presently a costlier energy generation system than other non-renewable energy sources.The main reasons are sea...A photovoltaic array is environmentally friendly and a source of unlimited energy generation.However,it is presently a costlier energy generation system than other non-renewable energy sources.The main reasons are seasonal variations and continuously changing weather conditions,which affect the amount of solar energy received by the solar panels.In addition,the non-linear characteristics of the voltage and current outputs along with the operating environment temperature and variation in the solar radiation decrease the energy conversion capability of the photovoltaic arrays.To address this problem,the global maxima of the PV arrays can be tracked using a maximum power point tracking algorithm(MPPT)and the operating point of the photovoltaic system can be forced to its optimum value.This technique increases the efficiency of the photovoltaic array and minimizes the cost of the system by reducing the number of solar modules required to obtain the desired power.However,the tracking algorithms are not equally effective in all areas of application.Therefore,selecting the correct MPPT is very critical.This paper presents a detailed review and comparison of the MPPT techniques for photovoltaic systems,with consideration of the following key parameters:photovoltaic array dependence,type of system(analog or digital),need for periodic tuning,convergence speed,complexity of the system,global maxima,implemented capacity,and sensed parameter(s).In addition,based on real meteorological data(irradiance and temperature at a site located in Addis Ababa,Ethiopia),a simulation is performed to evaluate the performance of tracking algorithms suitable for the application being studied.Finally,the study clearly validates the considerable energy saving achieved by using these algorithms.展开更多
A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DF...A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DFIG is found to be the best option in the Wind Energy Conversion Systems(WECS)to mitigate the issues caused by power converters.In this work,a new Artificial Neural Network(ANN)is proposed with the Diffusion and Dispersal strategy that works on Maximum Power Point Tracking(MPPT)along with Wind Energy Conversion System(WECS)to minimize electrical faults.The controller focus was not just to increase performance but also to reduce damage owing to any phase to phase fault or Phase to phase to ground fault.To ensure optimal MPPT for the proposed WECS,ANN achieves the optimal PI controller parameters for the indirect control of active and reactive power of DFIG.The optimal allocation and size of the DGs within the distributed system and for MPPT control are obtained using a population of agents.The generated solutions are evaluated and on being successful,the agents test their hypothesis again to create a positive feedback mechanism.Simulations are carried out,and the proposed IoT framework efficiency indicates performance improvement and faster recovery against faults by 9 percent for phase to ground fault and by 7.35 percent for phase to phase fault.展开更多
This study integrates the individual photovoltaic(PV)and thermoelectric generator(TEG)systems into a PV-TEG hybrid system to improve its overall power output by reutilizing the waste heat generated during PV power pro...This study integrates the individual photovoltaic(PV)and thermoelectric generator(TEG)systems into a PV-TEG hybrid system to improve its overall power output by reutilizing the waste heat generated during PV power production to enhance its operational relia-bility.However,stochastic environmental conditions often result in partial shading conditions and nonuniform thermal distribution across the PV-TEG modules,which negatively affect the output characteristics of the system,thus presenting a significant challenge to maintaining their optimal performance.To address these challenges,a novel fitness-distance-balance-based beluga whale optimization(FDBBWO)strategy has been devised for maximizing the power output of the PV-TEG hybrid system under dynamic operation scenar-ios.A broader spectrum of complex and authentic operational contexts has been considered in case studies to examine the effectiveness and feasibility of FDBBWO.For this,real-world datasets collected from different seasons in Hong Kong have been used to validate the practical viability of the proposed strategy.Simulation results reveal that the FDBBWO based maximum power point tracking technique outperforms its competing methods by achieving the highest energy output,with a remarkable increase of up to 134.25%with minimal power fluctuations.For instance,the energy obtained by FDBBWO is 47.45%and 58.34%higher than BWO and perturb and observe methods,respectively,in the winter season.展开更多
针对光照强度不均匀造成光伏阵列的输出曲线为多峰曲线,传统最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制算法不能跟踪到全局最大功率的问题,文章提出一种基于改进麻雀搜索算法(Improved the Sparrow Search Algorithm,ISSA...针对光照强度不均匀造成光伏阵列的输出曲线为多峰曲线,传统最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制算法不能跟踪到全局最大功率的问题,文章提出一种基于改进麻雀搜索算法(Improved the Sparrow Search Algorithm,ISSA)和扰动观察法(Perturbation and Observation Method,P&O)的光储发电系统MPPT控制方法。首先,在跟踪前期,采用混沌映射方式增加ISSA种群多样性,提升算法广泛搜索能力。为了防止算法陷入局部最优,利用萤火虫扰动算法对麻雀个体进行扰动更新;其次,在跟踪后期,使用P&O防止系统在最大功率点附近振荡,保证最大功率点稳定输出;最后,经过算例分析,所提MPPT控制方法实现了不同场景下的快速跟踪、精准输出,能够很好应用地于光储混合发电系统中。展开更多
基金supported by Aeronautical Science Foundation of China(2017ZC52021)the Fundamental Research Funds for the Central Universities(NS2017066)+1 种基金the Foundation of Graduate Innovation Center in NUAA(kfjj20171501)China Postdoctoral Science Foundation Funded Project(2015M581791)
文摘Millimeter wave(mmWave) communications of unmanned aerial vehicles(UAVs) have drawn dramatic attentions for its flexibility on a variety of applications.Recently,channel tracking base on the spatial features has been proposed to solve the problem of beam misalignments due to the UAV navigation.However,unstable beam pointing caused by the non-ideal beam tracking environment may impact the performance of mmWave systems significantly.In this paper,an improved beamforming method is presented to overcome this shortcoming.Firstly,the effect of the beam deviation is analyzed through the establishment of the equivalent data rate.Then,combining the quantification of spatial angle and the improved orthogonal matching pursuit(OMP) algorithm,an optimized beam corresponding to the beam deviation is obtained.Simulation results show that the optimized beam of the proposed approach can effectively improve the spectral efficiency without improving the complexity when the beam pointing is unstable.
文摘This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in different environmental conditions.We propose a robust FLC with low computational complexity by reducing the number of membership functions and rules.To optimize the performance of the FLC,metaheuristic algorithms are employed to determine the parameters of the FLC.We evaluate the proposed FLC in various panel configurations under different environmental conditions.The results indicate that the proposed FLC can easily adapt to various panel configurations and perform better than other benchmarks in terms of enhanced stability,responsiveness,and power transfer under various scenarios.
基金supported by the following project of the Addis Ababa Institute of Technology,African Railway Center of Excellence,and World Bank group:“A research on integration of renewable and Alternative Energy Sources into Ethiopian Railway System.”(AAITRS-GSR-7767-18).
文摘A photovoltaic array is environmentally friendly and a source of unlimited energy generation.However,it is presently a costlier energy generation system than other non-renewable energy sources.The main reasons are seasonal variations and continuously changing weather conditions,which affect the amount of solar energy received by the solar panels.In addition,the non-linear characteristics of the voltage and current outputs along with the operating environment temperature and variation in the solar radiation decrease the energy conversion capability of the photovoltaic arrays.To address this problem,the global maxima of the PV arrays can be tracked using a maximum power point tracking algorithm(MPPT)and the operating point of the photovoltaic system can be forced to its optimum value.This technique increases the efficiency of the photovoltaic array and minimizes the cost of the system by reducing the number of solar modules required to obtain the desired power.However,the tracking algorithms are not equally effective in all areas of application.Therefore,selecting the correct MPPT is very critical.This paper presents a detailed review and comparison of the MPPT techniques for photovoltaic systems,with consideration of the following key parameters:photovoltaic array dependence,type of system(analog or digital),need for periodic tuning,convergence speed,complexity of the system,global maxima,implemented capacity,and sensed parameter(s).In addition,based on real meteorological data(irradiance and temperature at a site located in Addis Ababa,Ethiopia),a simulation is performed to evaluate the performance of tracking algorithms suitable for the application being studied.Finally,the study clearly validates the considerable energy saving achieved by using these algorithms.
文摘A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DFIG is found to be the best option in the Wind Energy Conversion Systems(WECS)to mitigate the issues caused by power converters.In this work,a new Artificial Neural Network(ANN)is proposed with the Diffusion and Dispersal strategy that works on Maximum Power Point Tracking(MPPT)along with Wind Energy Conversion System(WECS)to minimize electrical faults.The controller focus was not just to increase performance but also to reduce damage owing to any phase to phase fault or Phase to phase to ground fault.To ensure optimal MPPT for the proposed WECS,ANN achieves the optimal PI controller parameters for the indirect control of active and reactive power of DFIG.The optimal allocation and size of the DGs within the distributed system and for MPPT control are obtained using a population of agents.The generated solutions are evaluated and on being successful,the agents test their hypothesis again to create a positive feedback mechanism.Simulations are carried out,and the proposed IoT framework efficiency indicates performance improvement and faster recovery against faults by 9 percent for phase to ground fault and by 7.35 percent for phase to phase fault.
基金supported by National Natural Science Foundation of China(62263014)Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443).
文摘This study integrates the individual photovoltaic(PV)and thermoelectric generator(TEG)systems into a PV-TEG hybrid system to improve its overall power output by reutilizing the waste heat generated during PV power production to enhance its operational relia-bility.However,stochastic environmental conditions often result in partial shading conditions and nonuniform thermal distribution across the PV-TEG modules,which negatively affect the output characteristics of the system,thus presenting a significant challenge to maintaining their optimal performance.To address these challenges,a novel fitness-distance-balance-based beluga whale optimization(FDBBWO)strategy has been devised for maximizing the power output of the PV-TEG hybrid system under dynamic operation scenar-ios.A broader spectrum of complex and authentic operational contexts has been considered in case studies to examine the effectiveness and feasibility of FDBBWO.For this,real-world datasets collected from different seasons in Hong Kong have been used to validate the practical viability of the proposed strategy.Simulation results reveal that the FDBBWO based maximum power point tracking technique outperforms its competing methods by achieving the highest energy output,with a remarkable increase of up to 134.25%with minimal power fluctuations.For instance,the energy obtained by FDBBWO is 47.45%and 58.34%higher than BWO and perturb and observe methods,respectively,in the winter season.
文摘针对光照强度不均匀造成光伏阵列的输出曲线为多峰曲线,传统最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制算法不能跟踪到全局最大功率的问题,文章提出一种基于改进麻雀搜索算法(Improved the Sparrow Search Algorithm,ISSA)和扰动观察法(Perturbation and Observation Method,P&O)的光储发电系统MPPT控制方法。首先,在跟踪前期,采用混沌映射方式增加ISSA种群多样性,提升算法广泛搜索能力。为了防止算法陷入局部最优,利用萤火虫扰动算法对麻雀个体进行扰动更新;其次,在跟踪后期,使用P&O防止系统在最大功率点附近振荡,保证最大功率点稳定输出;最后,经过算例分析,所提MPPT控制方法实现了不同场景下的快速跟踪、精准输出,能够很好应用地于光储混合发电系统中。