Metal nanoparticles with high surface area and high electrochemical activity exhibit excellent catalytic performance in the photocatalytic reduction of carbon dioxide(CO_(2)).However,poor stability,small specific surf...Metal nanoparticles with high surface area and high electrochemical activity exhibit excellent catalytic performance in the photocatalytic reduction of carbon dioxide(CO_(2)).However,poor stability,small specific surface area,and less active sites limits its solar energy utilization.Hydrothermal method was utilized to synthesize the bimetallic material of Cu_(x)Co_(1-x)in this work.Co was loaded onto the Cu surface due to the electrons generated by the surface plasmon resonance(SPR)effect occurring on the Cu surface.Cu_(x)Co_(1-x)exhibits high photocatalytic conversion of CO_(2)efficiency under irradiation,which mainly because the Co nanoparticles on the surface of Cu can be used as cocatalysts to enhance the photocharge transfer.Cu_(0.6)Co_(0.4)exhibits the comparatively best photocatalytic conversion efficiency of CO_(2)in the first 6 h light irradiation.The yields of CO and CH_(4)reached 35.26 and 2.71μmol/(g·h),respectively.Upon illumination,electrons were produced,with the majority of them moving towards the interface.This movement contributes to the increased lifetime of photogenerated electron-hole pairs,which in turn boosts the photocatalytic efficiency.The findings of this research provide significant insights for creating photocatalysts that are both highly effective and stable in CO_(2)reduction processes.展开更多
To perform the mechanism study of special association for vancomycin and D-Ala-D-Ala-containing peptides on the interface of solution and self-assemble monolayer, the binding between vancomycin and pentapeptide (Lys-...To perform the mechanism study of special association for vancomycin and D-Ala-D-Ala-containing peptides on the interface of solution and self-assemble monolayer, the binding between vancomycin and pentapeptide (Lys-Lys-Gly-D-Ala-D-Ala) was investigated by flow injection surface plasmon resonance (FI-SPR) and flow injection quartz crystal microbalance (FI-QCM). To facilitate the formation of a compact vancomycin adsorbates layer with a uniform surface orientation, vancomycin molecules were attached onto a preformed alkanethiol self-assembled monolayer. By optimizing the conditions for the binding between Lys-Lys-Gly-D-Ala-D-Ala and vancomycin on the assembled chip, the detecting limit of Lys-Lys-Gly-D-Ala-D-Ala was greatly improved (reaching 0.5 ×10^- 6 mol/L or 7.5 × 10^-12 mol). The equilibrium constant of the association of Lys-Lys-Gly-D-Ala-D-Ala with vancomycin was also obtained (KAds=5.0×10^4 L/tool).展开更多
Triangular silver nanoplates in aqueous solvent and on the surface of quartz substrate have been synthesized by seed-mediated growth approach in the presence of tannin.It was found that both the amount of tannin and t...Triangular silver nanoplates in aqueous solvent and on the surface of quartz substrate have been synthesized by seed-mediated growth approach in the presence of tannin.It was found that both the amount of tannin and the small triangular silver nanoplate seeds added to the growth solution are the key factors to modulation absorption band of triangular silver nanoplates.The optical in-plane dipole surface plasmon resonance (SPR) bands of these Ag nanoplates can be tuned from 608 nm to 980 nm via tannin deoxidization method.The formation mechanism of triangular silver nanoplates was proposed.The tannin deoxidization method realizes a convenient modulation of the absorption band of Ag nanostructures within the visible near-infrared (IR) region both in aqueous solvent and on substrates under mild conditions.展开更多
A surface plasmon resonance(SPR)sensor with Ag/PbS/GR hybrid nanostructure has been proposed for the diagnostics of liquid phase samples.Here Ag/PbS/GR hybrid nanostructure is designed as an asymmetric MIM waveguide f...A surface plasmon resonance(SPR)sensor with Ag/PbS/GR hybrid nanostructure has been proposed for the diagnostics of liquid phase samples.Here Ag/PbS/GR hybrid nanostructure is designed as an asymmetric MIM waveguide for surface plasmon.Due to the guided wave SPR(GWSPR)modes,the index of the liquid phase samples can be measured more accurately than the conventional SPR sensors.Numerical simulation results show that the sensitivity of the sensor is about 5 times higher than the conventional SPR sensors.The origin of the enhancement mechanism is the combination of GWSPR in the Ag/PbS/GR hybrid nanostructure which enables the surface plasmon to spread along the PbS layer.In Ag/PbS/GR hybrid nanostructure,the electric field is concentrated mostly in the PbS layer,and the enhancement of the field intensity is nearly30%.展开更多
Silver nanostructure compact aggregates on the surface of quartz glass substrates were synthesized by small gold seeds with the assistance of poly vinypyrrolidone (PVP) and irradiation of fluorescent lamp. The formati...Silver nanostructure compact aggregates on the surface of quartz glass substrates were synthesized by small gold seeds with the assistance of poly vinypyrrolidone (PVP) and irradiation of fluorescent lamp. The formation mechanism of silver nanostructure was proposed. The results show that both the PVP and the light irradiation are the keys to in-situ growth of silver nanostructure on quartz glass substrates. The silver nanostructure of the substrates which finally grow up to 150 nm after 20 h irradiation exhibits irregular shape, and some of nanoparticles stack to form bilayer. A new broad band appears in the absorption spectra of the substrates due to the interparticle dipole?dipole coupling of surface plasmon resonance response of the triangular silver nanoplate particles, which red shifts 600?800 nm as the particles grow up. The substrates have an emission band centered at 400 nm on their fluorescence spectra, and the fluorescence intensity shrinks as the average size of the silver nanostructure increases. The strongest SERS signal of SERS-active substrate is fabricated after 16 h.展开更多
OBJECTIVE Plasmonic nanostructures act as a type of promising candidate for cancer photothermal therapy.These photothermal agents with good biocompatibility and high photothermal conversion efficiency are highly desir...OBJECTIVE Plasmonic nanostructures act as a type of promising candidate for cancer photothermal therapy.These photothermal agents with good biocompatibility and high photothermal conversion efficiency are highly desirable.In the present study,we synthesized poly(diallyldimethylammonium chloride)(PDDAC)coated porous platinum(Pt)nanoparticles for photothermal therapy.METHODS Biocompatibility and cellular uptake of Pt nanoparticles were studied in human glioblastoma U-87 MG cells.Cell viability was evaluated by ATP assay and calcein AM staining.The photothermal therapeutic effect of the Pt nanoparticles was studied under 808-nm laser irradiation.In addition,the synergistic anti-cancer effect of the Pt nanoparticle-based photothermal therapy and doxorubicinwas investigated.RESULTS The as-prepared Pt nanoparticles exhibited considerable photothermal conversion efficiency under 809 nm and 980 nm laser irradiation.In vitro study indicated that the Pt nanoparticles displayed good biocompatibility and high cellular uptake efficiency.In the presence of the Pt nanoparticles,808-nm laser irradiation at 8.4 W·cm-2for3 min induces significant cytotoxicity,and cell necrosis is involved in the photothermal injury.Furthermore,simultaneousapplication of photothermal therapy synergistically enhances the cytotoxicity of anticancer drug doxorubicin.CONCLUSION Therefore,PDADMAC-coated Pt nanoparticles will have great potential in cancer photothermal therapy.展开更多
基金supported by the Doctoral Research Start-up Project of Yuncheng University(YQ-2023067)Project of Shanxi Natural Science Foundation(202303021211189)+2 种基金Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provinces(20220036)Shanxi Province Intelligent Optoelectronic Sensing Application Technology Innovation CenterShanxi Province Optoelectronic Information Science and Technology Laboratory,Yuncheng University。
文摘Metal nanoparticles with high surface area and high electrochemical activity exhibit excellent catalytic performance in the photocatalytic reduction of carbon dioxide(CO_(2)).However,poor stability,small specific surface area,and less active sites limits its solar energy utilization.Hydrothermal method was utilized to synthesize the bimetallic material of Cu_(x)Co_(1-x)in this work.Co was loaded onto the Cu surface due to the electrons generated by the surface plasmon resonance(SPR)effect occurring on the Cu surface.Cu_(x)Co_(1-x)exhibits high photocatalytic conversion of CO_(2)efficiency under irradiation,which mainly because the Co nanoparticles on the surface of Cu can be used as cocatalysts to enhance the photocharge transfer.Cu_(0.6)Co_(0.4)exhibits the comparatively best photocatalytic conversion efficiency of CO_(2)in the first 6 h light irradiation.The yields of CO and CH_(4)reached 35.26 and 2.71μmol/(g·h),respectively.Upon illumination,electrons were produced,with the majority of them moving towards the interface.This movement contributes to the increased lifetime of photogenerated electron-hole pairs,which in turn boosts the photocatalytic efficiency.The findings of this research provide significant insights for creating photocatalysts that are both highly effective and stable in CO_(2)reduction processes.
基金Projects(20773165,20876179) supported by the National Natural Science Foundation of ChinaProject(09JJ1002) supported by the Hunan Provincial Natural Science Foundation,China+1 种基金Project(NCET-07-0865) for New Century Excellent Talents in Chinese UniversityProject(2007AA022006) supported by the National High Technology Research and Development Program of China
文摘To perform the mechanism study of special association for vancomycin and D-Ala-D-Ala-containing peptides on the interface of solution and self-assemble monolayer, the binding between vancomycin and pentapeptide (Lys-Lys-Gly-D-Ala-D-Ala) was investigated by flow injection surface plasmon resonance (FI-SPR) and flow injection quartz crystal microbalance (FI-QCM). To facilitate the formation of a compact vancomycin adsorbates layer with a uniform surface orientation, vancomycin molecules were attached onto a preformed alkanethiol self-assembled monolayer. By optimizing the conditions for the binding between Lys-Lys-Gly-D-Ala-D-Ala and vancomycin on the assembled chip, the detecting limit of Lys-Lys-Gly-D-Ala-D-Ala was greatly improved (reaching 0.5 ×10^- 6 mol/L or 7.5 × 10^-12 mol). The equilibrium constant of the association of Lys-Lys-Gly-D-Ala-D-Ala with vancomycin was also obtained (KAds=5.0×10^4 L/tool).
基金Project(10804101) supported by the National Natural Science Foundation of ChinaProject(2007CB815102) supported by the National Basic Research Program of ChinaProject(2007B08007) supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics
文摘Triangular silver nanoplates in aqueous solvent and on the surface of quartz substrate have been synthesized by seed-mediated growth approach in the presence of tannin.It was found that both the amount of tannin and the small triangular silver nanoplate seeds added to the growth solution are the key factors to modulation absorption band of triangular silver nanoplates.The optical in-plane dipole surface plasmon resonance (SPR) bands of these Ag nanoplates can be tuned from 608 nm to 980 nm via tannin deoxidization method.The formation mechanism of triangular silver nanoplates was proposed.The tannin deoxidization method realizes a convenient modulation of the absorption band of Ag nanostructures within the visible near-infrared (IR) region both in aqueous solvent and on substrates under mild conditions.
基金supported by Anhui University Natural Science Research Project,China(KJ2015A153)National Natural Science Foundation of China (11304002)
文摘A surface plasmon resonance(SPR)sensor with Ag/PbS/GR hybrid nanostructure has been proposed for the diagnostics of liquid phase samples.Here Ag/PbS/GR hybrid nanostructure is designed as an asymmetric MIM waveguide for surface plasmon.Due to the guided wave SPR(GWSPR)modes,the index of the liquid phase samples can be measured more accurately than the conventional SPR sensors.Numerical simulation results show that the sensitivity of the sensor is about 5 times higher than the conventional SPR sensors.The origin of the enhancement mechanism is the combination of GWSPR in the Ag/PbS/GR hybrid nanostructure which enables the surface plasmon to spread along the PbS layer.In Ag/PbS/GR hybrid nanostructure,the electric field is concentrated mostly in the PbS layer,and the enhancement of the field intensity is nearly30%.
基金Projects(10804101,60908023)supported by the National Natural Science Foundation of ChinaProject(2007CB815102)supported by the National Basic Research Program of ChinaProject(2007B08007)supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics
文摘Silver nanostructure compact aggregates on the surface of quartz glass substrates were synthesized by small gold seeds with the assistance of poly vinypyrrolidone (PVP) and irradiation of fluorescent lamp. The formation mechanism of silver nanostructure was proposed. The results show that both the PVP and the light irradiation are the keys to in-situ growth of silver nanostructure on quartz glass substrates. The silver nanostructure of the substrates which finally grow up to 150 nm after 20 h irradiation exhibits irregular shape, and some of nanoparticles stack to form bilayer. A new broad band appears in the absorption spectra of the substrates due to the interparticle dipole?dipole coupling of surface plasmon resonance response of the triangular silver nanoplate particles, which red shifts 600?800 nm as the particles grow up. The substrates have an emission band centered at 400 nm on their fluorescence spectra, and the fluorescence intensity shrinks as the average size of the silver nanostructure increases. The strongest SERS signal of SERS-active substrate is fabricated after 16 h.
基金The project supported by the Macao Science and Technology Development Fund(FDCT)(014/2014/A1)
文摘OBJECTIVE Plasmonic nanostructures act as a type of promising candidate for cancer photothermal therapy.These photothermal agents with good biocompatibility and high photothermal conversion efficiency are highly desirable.In the present study,we synthesized poly(diallyldimethylammonium chloride)(PDDAC)coated porous platinum(Pt)nanoparticles for photothermal therapy.METHODS Biocompatibility and cellular uptake of Pt nanoparticles were studied in human glioblastoma U-87 MG cells.Cell viability was evaluated by ATP assay and calcein AM staining.The photothermal therapeutic effect of the Pt nanoparticles was studied under 808-nm laser irradiation.In addition,the synergistic anti-cancer effect of the Pt nanoparticle-based photothermal therapy and doxorubicinwas investigated.RESULTS The as-prepared Pt nanoparticles exhibited considerable photothermal conversion efficiency under 809 nm and 980 nm laser irradiation.In vitro study indicated that the Pt nanoparticles displayed good biocompatibility and high cellular uptake efficiency.In the presence of the Pt nanoparticles,808-nm laser irradiation at 8.4 W·cm-2for3 min induces significant cytotoxicity,and cell necrosis is involved in the photothermal injury.Furthermore,simultaneousapplication of photothermal therapy synergistically enhances the cytotoxicity of anticancer drug doxorubicin.CONCLUSION Therefore,PDADMAC-coated Pt nanoparticles will have great potential in cancer photothermal therapy.