Based on the three-cathode plasma spraying system,tantalum(Ta)coatings were pre-pared on the substrate of CuCrZr alloy.The effects of different auxiliary gas(helium)flow rates on the microstructure,phase composition,m...Based on the three-cathode plasma spraying system,tantalum(Ta)coatings were pre-pared on the substrate of CuCrZr alloy.The effects of different auxiliary gas(helium)flow rates on the microstructure,phase composition,mechanical and wear resistance properties of Ta coatings were studied.The results showed that the oxidation degree of the coatings decreases first and then increases with the increase of the auxiliary gas flow.When the auxiliary gas flow rate is 70 L·min-1,the oxidation degree of the coating is the lowest,minimum value of the porosity is 0.21%,and the bonding strength reaches the maximum,59.3 MPa.At this time,the coating wear rate is 0.0012 mm^(3)·N^(-1)·m^(-1)with the best wear resistance.This indicates that the auxiliary gas flow has an important influence on the quality and surface mechanical properties of tantalum coating.展开更多
A kind of plasma spraying torch with a hollow cathode is described in this paper. The plasma torch can be used for axial powder injection in plasma spray studies. The arc characteristics of the plasma torch with vacu...A kind of plasma spraying torch with a hollow cathode is described in this paper. The plasma torch can be used for axial powder injection in plasma spray studies. The arc characteristics of the plasma torch with vacuous gas flowrates, different gas media, are presented. The mathematical modeling and computational method are developed for predicting the temperature and velocity field inside the plasma torch.展开更多
The effects of parameters, in the process of plasma-sprayed ceramic coating, upon the deposition efficiency of alumina-13 wt.% titania composite coatings are reported. The coatings were prepared by the atmospheric pla...The effects of parameters, in the process of plasma-sprayed ceramic coating, upon the deposition efficiency of alumina-13 wt.% titania composite coatings are reported. The coatings were prepared by the atmospheric plasma spray process. The plasma torch input power, flow rates of primary, secondary and carrier gas, powder feed rate and spraying distance were considered as variables. The results show that the variations in all the selected spraying parameters strongly affect the deposition efficiency. The micro-hardness, as well as erosive and sliding wear rates of the coating are also affected by these parameters. Especially the input power strongly affects the phase and microstructure of the coatings.展开更多
During atmospheric plasma spraying,a cooling process usually plays an important role in the coating quality,especially for the oxidation containment of metallic coatings.CuNiIn and Mo coatings were prepared using atmo...During atmospheric plasma spraying,a cooling process usually plays an important role in the coating quality,especially for the oxidation containment of metallic coatings.CuNiIn and Mo coatings were prepared using atmospheric plasma spraying with different cooling processes.The obtained coatings were characterized in terms of microstructure,microhardness and tensile strengths.The relation between the coating microstructure and their fretting fatigue behavior was emphasized.The results show that the sensitivity of Mo coatings to the cooling process is lower than CuNiIn coatings.The resistance to fretting fatigue is determined by the coating microhardness,correlated with the contents of oxides and pores.The fretting wear mechanisms of both the coatings are galling,third body abrasive wear and material transfer.展开更多
Nanocrystalline powders of w(Al2O3)=95%, w(TiO2)=3%, and w(SiO2)=2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat...Nanocrystalline powders of w(Al2O3)=95%, w(TiO2)=3%, and w(SiO2)=2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D. C. plasma was used to spray the agglomerated nanocrystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Exper-imental results show that the agglomerated nanocrystalline particles are spherical, with a size from (10 - 90)μm. The flow ability of the nanocrystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nanostructure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nanostructured coatings. Although the nanostructured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nanostructured ceramic coatings is significantly improved.展开更多
Doped graphite GBST1308, mechanically jointed to CuCrZr alloys, will be applied on EAST superconducting as plasma facing material (PFM). Two joint structures called joint-1 and joint-2 were evaluated by means of the...Doped graphite GBST1308, mechanically jointed to CuCrZr alloys, will be applied on EAST superconducting as plasma facing material (PFM). Two joint structures called joint-1 and joint-2 were evaluated by means of thermal response tests using electron beam facility. The experimental results showed that the temperature differences of two joints were not significant, and the maximum surface temperature was about 1055℃ at a load of 4 MW/m^2, which had a good agreement with the simulated results by ANSYS code. The results indicated that the doped graphite GBST1308/CuCrZr mock-up can withstand heat flux deposition of 4 MW/m^2 except at the screw-fastened region, and joint-2 could be more suitable to higher heat flux region such as divertor target. But under the higher heat flux, both joints are unacceptable, an advanced PFM and its integration with the heat sink have to be developed, for example, vacuum plasma spraying tungsten coatings on the CuCrZr might be a good choice.展开更多
Apatite-type lanthanum silicate was successfully synthesized via a solid state re- action protocol at 1400~C in a vacuum for 4 hours. The powder was synthesized faster and at a lower reaction temperature than by conve...Apatite-type lanthanum silicate was successfully synthesized via a solid state re- action protocol at 1400~C in a vacuum for 4 hours. The powder was synthesized faster and at a lower reaction temperature than by conventional solid state reaction methods. The resulting powder was used in the fabrication of a coating deposited by atmospheric plasma spray (APS) technology. The microstructure of the coating was analyzed by X-ray diffraction and scanning electron microscopy. Heat treatment was found to fully crystallize the coating, increasing its den-sity. The ionic conductivity of the apatite coating was 0.39 (0.054) mS/cm at 850 (700) ℃, and its activation energy was 0.67 eV.展开更多
Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of...Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of the ultrafine chromium oxide coatings. Scanning electron microscopy (SEM) was used to observe the morphology and particle size of ultrafine powder feedstock as well as to examine the microstructure of the chromium oxide coating. In addition, hardness and bonding strength of the ultrafine chromium oxide coatings were measured. The results showed that the optimized plasma spraying parameters were suitable for ultrafine chromium oxide coating and the properties and microstructure of the optimized ultrafine chromium oxide coating were superior compared to conventional chromium oxide wear resistant coatings.展开更多
Tungsten-coated carbon and copper was prepared by vacuum plasma spraying (VPS) and inert gas plasma spraying (IPS), respectively. W/CFC (Tungsten /Carbon Fiber-Enhanced material) coating has a diffusion barrier that c...Tungsten-coated carbon and copper was prepared by vacuum plasma spraying (VPS) and inert gas plasma spraying (IPS), respectively. W/CFC (Tungsten /Carbon Fiber-Enhanced material) coating has a diffusion barrier that consists of W and Re multi-layers pre-deposited by physical vapor deposition on carbon fiber-enhanced materials, while W/Cu coating has a graded transition interface. Different grain growth processes of tungsten coatings under stable and transient heat loads were observed, their experimental results indicated that the recrystallizing temperature of VPS-W coating was about 1400 ℃ and a recrystallized columnar layer of about 30 μm thickness was formed by cyclic heat loads of 4 ms pulse duration. Erosion and modifications of W/CFC and W/Cu coatings under high heat load, such as microstructure changes of interface, surface plastic deformations and cracks, were investigated, and the erosion mechanism (erosion products) of these two kinds of tungsten coatings under high heat flux was also studied.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52076212,U1933107)the Training Fund For Blue Sky Young Scholars of Civil Aviation University of ChinaNatural Science Foundation of Ningbo(No.2019A610173).
文摘Based on the three-cathode plasma spraying system,tantalum(Ta)coatings were pre-pared on the substrate of CuCrZr alloy.The effects of different auxiliary gas(helium)flow rates on the microstructure,phase composition,mechanical and wear resistance properties of Ta coatings were studied.The results showed that the oxidation degree of the coatings decreases first and then increases with the increase of the auxiliary gas flow.When the auxiliary gas flow rate is 70 L·min-1,the oxidation degree of the coating is the lowest,minimum value of the porosity is 0.21%,and the bonding strength reaches the maximum,59.3 MPa.At this time,the coating wear rate is 0.0012 mm^(3)·N^(-1)·m^(-1)with the best wear resistance.This indicates that the auxiliary gas flow has an important influence on the quality and surface mechanical properties of tantalum coating.
文摘A kind of plasma spraying torch with a hollow cathode is described in this paper. The plasma torch can be used for axial powder injection in plasma spray studies. The arc characteristics of the plasma torch with vacuous gas flowrates, different gas media, are presented. The mathematical modeling and computational method are developed for predicting the temperature and velocity field inside the plasma torch.
基金supported by a grant from The Department of Science and Technology(DST), Government of India
文摘The effects of parameters, in the process of plasma-sprayed ceramic coating, upon the deposition efficiency of alumina-13 wt.% titania composite coatings are reported. The coatings were prepared by the atmospheric plasma spray process. The plasma torch input power, flow rates of primary, secondary and carrier gas, powder feed rate and spraying distance were considered as variables. The results show that the variations in all the selected spraying parameters strongly affect the deposition efficiency. The micro-hardness, as well as erosive and sliding wear rates of the coating are also affected by these parameters. Especially the input power strongly affects the phase and microstructure of the coatings.
基金the National Natural Science Foundation of China[grant numbers 51875424,51501137 and 51702244]the Fundamental Research Funds for the Central Universities[WUT:2019III033].
文摘During atmospheric plasma spraying,a cooling process usually plays an important role in the coating quality,especially for the oxidation containment of metallic coatings.CuNiIn and Mo coatings were prepared using atmospheric plasma spraying with different cooling processes.The obtained coatings were characterized in terms of microstructure,microhardness and tensile strengths.The relation between the coating microstructure and their fretting fatigue behavior was emphasized.The results show that the sensitivity of Mo coatings to the cooling process is lower than CuNiIn coatings.The resistance to fretting fatigue is determined by the coating microhardness,correlated with the contents of oxides and pores.The fretting wear mechanisms of both the coatings are galling,third body abrasive wear and material transfer.
基金This work was supported by the Prionrity Development Program of the Hunan Resources Ministry of China for Oversea Students.
文摘Nanocrystalline powders of w(Al2O3)=95%, w(TiO2)=3%, and w(SiO2)=2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D. C. plasma was used to spray the agglomerated nanocrystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Exper-imental results show that the agglomerated nanocrystalline particles are spherical, with a size from (10 - 90)μm. The flow ability of the nanocrystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nanostructure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nanostructured coatings. Although the nanostructured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nanostructured ceramic coatings is significantly improved.
基金supported by National Natural Science Foundation of China(No.10475080)
文摘Doped graphite GBST1308, mechanically jointed to CuCrZr alloys, will be applied on EAST superconducting as plasma facing material (PFM). Two joint structures called joint-1 and joint-2 were evaluated by means of thermal response tests using electron beam facility. The experimental results showed that the temperature differences of two joints were not significant, and the maximum surface temperature was about 1055℃ at a load of 4 MW/m^2, which had a good agreement with the simulated results by ANSYS code. The results indicated that the doped graphite GBST1308/CuCrZr mock-up can withstand heat flux deposition of 4 MW/m^2 except at the screw-fastened region, and joint-2 could be more suitable to higher heat flux region such as divertor target. But under the higher heat flux, both joints are unacceptable, an advanced PFM and its integration with the heat sink have to be developed, for example, vacuum plasma spraying tungsten coatings on the CuCrZr might be a good choice.
基金supported by Planned S&T Program of Shenzhen of China (No. JC201105170703A)
文摘Apatite-type lanthanum silicate was successfully synthesized via a solid state re- action protocol at 1400~C in a vacuum for 4 hours. The powder was synthesized faster and at a lower reaction temperature than by conventional solid state reaction methods. The resulting powder was used in the fabrication of a coating deposited by atmospheric plasma spray (APS) technology. The microstructure of the coating was analyzed by X-ray diffraction and scanning electron microscopy. Heat treatment was found to fully crystallize the coating, increasing its den-sity. The ionic conductivity of the apatite coating was 0.39 (0.054) mS/cm at 850 (700) ℃, and its activation energy was 0.67 eV.
文摘Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of the ultrafine chromium oxide coatings. Scanning electron microscopy (SEM) was used to observe the morphology and particle size of ultrafine powder feedstock as well as to examine the microstructure of the chromium oxide coating. In addition, hardness and bonding strength of the ultrafine chromium oxide coatings were measured. The results showed that the optimized plasma spraying parameters were suitable for ultrafine chromium oxide coating and the properties and microstructure of the optimized ultrafine chromium oxide coating were superior compared to conventional chromium oxide wear resistant coatings.
基金Part of the work was supported by Core University Program of Ministry of Education,Culture and Science,Japan
文摘Tungsten-coated carbon and copper was prepared by vacuum plasma spraying (VPS) and inert gas plasma spraying (IPS), respectively. W/CFC (Tungsten /Carbon Fiber-Enhanced material) coating has a diffusion barrier that consists of W and Re multi-layers pre-deposited by physical vapor deposition on carbon fiber-enhanced materials, while W/Cu coating has a graded transition interface. Different grain growth processes of tungsten coatings under stable and transient heat loads were observed, their experimental results indicated that the recrystallizing temperature of VPS-W coating was about 1400 ℃ and a recrystallized columnar layer of about 30 μm thickness was formed by cyclic heat loads of 4 ms pulse duration. Erosion and modifications of W/CFC and W/Cu coatings under high heat load, such as microstructure changes of interface, surface plastic deformations and cracks, were investigated, and the erosion mechanism (erosion products) of these two kinds of tungsten coatings under high heat flux was also studied.