现有的异常检测方法能在特定应用场景下实现高精度检测,然而这些方法难以适用于其他应用场景,且自动化程度有限。因此,提出一种视觉基础模型(VFM)驱动的像素级图像异常检测方法SSMOD-Net(State Space Model driven-Omni Dimensional Ne...现有的异常检测方法能在特定应用场景下实现高精度检测,然而这些方法难以适用于其他应用场景,且自动化程度有限。因此,提出一种视觉基础模型(VFM)驱动的像素级图像异常检测方法SSMOD-Net(State Space Model driven-Omni Dimensional Net),旨在实现更精确的工业缺陷检测。与现有方法不同,SSMOD-Net实现SAM(Segment Anything Model)的自动化提示且不需要微调SAM,因此特别适用于需要处理大规模工业视觉数据的场景。SSMOD-Net的核心是一个新颖的提示编码器,该编码器由状态空间模型驱动,能够根据SAM的输入图像动态地生成提示。这一设计允许模型在保持SAM架构不变的同时,通过提示编码器引入额外的指导信息,从而提高检测精度。提示编码器内部集成一个残差多尺度模块,该模块基于状态空间模型构建,能够综合利用多尺度信息和全局信息。这一模块通过迭代搜索,在提示空间中寻找最优的提示,并将这些提示以高维张量的形式提供给SAM,从而增强模型对工业异常的识别能力。而且所提方法不需要对SAM进行任何修改,从而避免复杂的对训练计划的微调需求。在多个数据集上的实验结果表明,所提方法展现出了卓越的性能,与AutoSAM和SAM-EG(SAM with Edge Guidance framework for efficient polyp segmentation)等方法相比,所提方法在mE(mean E-measure)和平均绝对误差(MAE)、Dice和交并比(IoU)上都取得了较好的结果。展开更多
针对SAR图像数据集的特点,提出了一种基于像元级图像时间序列相似性的水体提取方法。其基本思想是:构建像元级SAR图像时间序列,选取动态时间归整(dynamic time warping,DTW)算法作为时间序列相似度的度量方法,计算所有像元与标准水体像...针对SAR图像数据集的特点,提出了一种基于像元级图像时间序列相似性的水体提取方法。其基本思想是:构建像元级SAR图像时间序列,选取动态时间归整(dynamic time warping,DTW)算法作为时间序列相似度的度量方法,计算所有像元与标准水体像元时间序列的相似性;将水体边缘混合像元的DTW距离值设定为参考阈值,采用阈值法提取相似性较高的时间序列数据,其对应的像元即被识别为水体像元;最后利用每个像元的DTW距离值代替其后向散射值,采用8邻域搜索方法提高水体识别的精度。以2008年1—12月获取的25景分辨率为150 m的ENVISAT ASAR图像进行水体像元提取试验,结果表明,该方法的完整率和正确率均较高,能够应用于大范围区域水体的提取与制图。展开更多
文摘现有的异常检测方法能在特定应用场景下实现高精度检测,然而这些方法难以适用于其他应用场景,且自动化程度有限。因此,提出一种视觉基础模型(VFM)驱动的像素级图像异常检测方法SSMOD-Net(State Space Model driven-Omni Dimensional Net),旨在实现更精确的工业缺陷检测。与现有方法不同,SSMOD-Net实现SAM(Segment Anything Model)的自动化提示且不需要微调SAM,因此特别适用于需要处理大规模工业视觉数据的场景。SSMOD-Net的核心是一个新颖的提示编码器,该编码器由状态空间模型驱动,能够根据SAM的输入图像动态地生成提示。这一设计允许模型在保持SAM架构不变的同时,通过提示编码器引入额外的指导信息,从而提高检测精度。提示编码器内部集成一个残差多尺度模块,该模块基于状态空间模型构建,能够综合利用多尺度信息和全局信息。这一模块通过迭代搜索,在提示空间中寻找最优的提示,并将这些提示以高维张量的形式提供给SAM,从而增强模型对工业异常的识别能力。而且所提方法不需要对SAM进行任何修改,从而避免复杂的对训练计划的微调需求。在多个数据集上的实验结果表明,所提方法展现出了卓越的性能,与AutoSAM和SAM-EG(SAM with Edge Guidance framework for efficient polyp segmentation)等方法相比,所提方法在mE(mean E-measure)和平均绝对误差(MAE)、Dice和交并比(IoU)上都取得了较好的结果。
文摘针对SAR图像数据集的特点,提出了一种基于像元级图像时间序列相似性的水体提取方法。其基本思想是:构建像元级SAR图像时间序列,选取动态时间归整(dynamic time warping,DTW)算法作为时间序列相似度的度量方法,计算所有像元与标准水体像元时间序列的相似性;将水体边缘混合像元的DTW距离值设定为参考阈值,采用阈值法提取相似性较高的时间序列数据,其对应的像元即被识别为水体像元;最后利用每个像元的DTW距离值代替其后向散射值,采用8邻域搜索方法提高水体识别的精度。以2008年1—12月获取的25景分辨率为150 m的ENVISAT ASAR图像进行水体像元提取试验,结果表明,该方法的完整率和正确率均较高,能够应用于大范围区域水体的提取与制图。