The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy b...The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.展开更多
A great number of pipelines in China are in unsatisfactory condition and faced with problems of corrosion and cracking,but there are very few approaches for underwater pipeline detection.Pipeline detection autonomous ...A great number of pipelines in China are in unsatisfactory condition and faced with problems of corrosion and cracking,but there are very few approaches for underwater pipeline detection.Pipeline detection autonomous underwater vehicle(PDAUV) is hereby designed to solve these problems when working with advanced optical,acoustical and electrical sensors for underwater pipeline detection.PDAUV is a test bed that not only examines the logical rationality of the program,effectiveness of the hardware architecture,accuracy of the software interface protocol as well as the reliability and stability of the control system but also verifies the effectiveness of the control system in tank experiments and sea trials.The motion control system of PDAUV,including both the hardware and software architectures,is introduced in this work.The software module and information flow of the motion control system of PDAUV and a novel neural network-based control(NNC) are also covered.Besides,a real-time identification method based on neural network is used to realize system identification.The tank experiments and sea trials are carried out to verify the feasibility and capability of PDAUV control system to complete underwater pipeline detection task.展开更多
基金supported by the National Natural Science Foundation of China(71901212)the Science and Technology Innovation Program of Hunan Province(2020RC4046).
文摘The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.
基金Project(2011AA09A106)supported by the Hi-tech Research and Development Program of ChinaProject(51179035)supported by the National Natural Science Foundation of ChinaProject(2015ZX01041101)supported by Major National Science and Technology of China
文摘A great number of pipelines in China are in unsatisfactory condition and faced with problems of corrosion and cracking,but there are very few approaches for underwater pipeline detection.Pipeline detection autonomous underwater vehicle(PDAUV) is hereby designed to solve these problems when working with advanced optical,acoustical and electrical sensors for underwater pipeline detection.PDAUV is a test bed that not only examines the logical rationality of the program,effectiveness of the hardware architecture,accuracy of the software interface protocol as well as the reliability and stability of the control system but also verifies the effectiveness of the control system in tank experiments and sea trials.The motion control system of PDAUV,including both the hardware and software architectures,is introduced in this work.The software module and information flow of the motion control system of PDAUV and a novel neural network-based control(NNC) are also covered.Besides,a real-time identification method based on neural network is used to realize system identification.The tank experiments and sea trials are carried out to verify the feasibility and capability of PDAUV control system to complete underwater pipeline detection task.