The operational readiness test(ORT),like weapon testing before firing,is becoming more and more important for systems used in the field.However,the test requirement of the ORT is distinctive.Specifically,the rule of s...The operational readiness test(ORT),like weapon testing before firing,is becoming more and more important for systems used in the field.However,the test requirement of the ORT is distinctive.Specifically,the rule of selecting test items should be changed in different test turns,and whether there is a fault is more important than where the fault is.The popular dependency matrix(D-matrix)processing algorithms becomes low efficient because they cannot change their optimizing direc-tion and spend unnecessary time on fault localization and isola-tion.To this end,this paper proposes a D-matrix processing algorithm named piecewise heuristic algorithm for D-matrix(PHAD).Its key idea is to use a piecewise function comprised of multiple different functions instead of the commonly used fixed function and switch subfunctions according to the test stage.In this manner,PHAD has the capability of changing optimizing direction,precisely matching the variant test requirements,and generating an efficient test sequence.The experiments on the random matrixes of different sizes and densities prove that the proposed algorithm performs better than the classical algo-rithms in terms of expected test cost(ETC)and other metrics.More generally,the piecewise heuristic function shows a new way to design D-matrix processing algorithm and a more flexi-ble heuristic function to meet more complicated test requirements.展开更多
Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth th...Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth the objective function of uncon- strained SVMs. The three-order piecewise smooth support vector machine (TPWSSVMd) is proposed. The piecewise functions can get higher and higher approximation accuracy as required with the increase of parameter d. The global convergence proof of TPWSSVMd is given with the rough set theory. TPWSSVMd can efficiently handle large scale and high dimensional problems. Nu- merical results demonstrate TPWSSVMa has better classification performance and learning efficiency than other competitive base- lines.展开更多
The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal over...The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.展开更多
文摘The operational readiness test(ORT),like weapon testing before firing,is becoming more and more important for systems used in the field.However,the test requirement of the ORT is distinctive.Specifically,the rule of selecting test items should be changed in different test turns,and whether there is a fault is more important than where the fault is.The popular dependency matrix(D-matrix)processing algorithms becomes low efficient because they cannot change their optimizing direc-tion and spend unnecessary time on fault localization and isola-tion.To this end,this paper proposes a D-matrix processing algorithm named piecewise heuristic algorithm for D-matrix(PHAD).Its key idea is to use a piecewise function comprised of multiple different functions instead of the commonly used fixed function and switch subfunctions according to the test stage.In this manner,PHAD has the capability of changing optimizing direction,precisely matching the variant test requirements,and generating an efficient test sequence.The experiments on the random matrixes of different sizes and densities prove that the proposed algorithm performs better than the classical algo-rithms in terms of expected test cost(ETC)and other metrics.More generally,the piecewise heuristic function shows a new way to design D-matrix processing algorithm and a more flexi-ble heuristic function to meet more complicated test requirements.
基金Supported by the State Key Program of National Natural Science of China (60534010), National Basic Research Program of China (973 Program)(2009CB320604), National Natural Science Foundation of China (60674021), the Funds for Creative Research Groups of China (60521003), the 111 Project(B08015), and the Funds of Ph.D. Program of Ministry of Eduction, China (20060145019).
基金supported by the National Natural Science Foundation of China(6110016561100231+6 种基金5120530961472307)the Natural Science Foundation of Shaanxi Province(2012JQ80442014JM83132010JQ8004)the Foundation of Education Department of Shaanxi Province(2013JK1096)the New Star Team of Xi’an University of Posts and Telecommunications
文摘Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth the objective function of uncon- strained SVMs. The three-order piecewise smooth support vector machine (TPWSSVMd) is proposed. The piecewise functions can get higher and higher approximation accuracy as required with the increase of parameter d. The global convergence proof of TPWSSVMd is given with the rough set theory. TPWSSVMd can efficiently handle large scale and high dimensional problems. Nu- merical results demonstrate TPWSSVMa has better classification performance and learning efficiency than other competitive base- lines.
基金supported in part by the Scientific Research Project of Heilongjiang Province Education Bureau(12541200)
文摘The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.