期刊文献+
共找到867篇文章
< 1 2 44 >
每页显示 20 50 100
Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
1
作者 李亚涛 刘英光 +3 位作者 李鑫 李亨宣 王志香 张久意 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期78-84,共7页
The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric... The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric conversion,insulating materials and thermal barrier coatings,etc.In this work,the effects of nanopillars and Ge nanoparticles(GNPs)on the thermal transport of Si nanowire(SN)are investigated by nonequilibrium molecular dynamics(NEMD)simulation.By analyzing phonons transport behaviors,it is confirmed that the introduction of nanopillars leads to the occurrence of lowfrequency phonons resonance,and nanoparticles enhance high-frequency phonons interface scattering and localization.The results show that phonons transport in the whole frequency range can be strongly hindered by the simultaneous introduction of nanopillars and nanoparticles.In addition,the effects of system length,temperature,sizes and numbers of nanoparticles on the TC are investigated.Our work provides useful insights into the effective regulation of the TC of nanomaterials. 展开更多
关键词 resonant structure NANOPARTICLES NANOPILLARS phonon transport thermal conductivity
在线阅读 下载PDF
Ultrasonic scalpel based on fusiform phononic crystal structure
2
作者 Sha Wang Junjie Shan Shuyu Lin 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期302-310,共9页
In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical mod... In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical model is constructed,which is mainly composed of electromechanical equivalent circuit models to analyze the frequency response function and the frequency response curves of the admittance.Bragg band gaps exist in the fusiform PnCs owing to the periodic constraint,which can suppress the corresponding vibrational modes.The vibration characteristics(vibration mode,frequency,and displacement distribution)of the ultrasonic scalpel are analyzed,and the validity of the electromechanical equivalent circuit method is verified.The results indicate that other vibration modes near the working frequency can be isolated.In addition,blades based on fusiform PnCs have a function akin to that of the horn,which enables displacement amplification. 展开更多
关键词 phononic crystals ultrasonic scalpel bandgap vibration characteristics
在线阅读 下载PDF
First-Principles Study on Thermal and Electrical Transport Properties of NbGe_(2) and NbSi_(2):The Role of Electron-Phonon Coupling
3
作者 Gui-Lin Zhu Man-Yu Shang Jing-Tao Lu 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第12期107-120,共14页
We investigate coupled electron and phonon transport in NbX_(2) with X=Ge,Si,where experimental evidence of strong electron-phonon coupling and hydrodynamic transport has been reported.Based on first-principles densit... We investigate coupled electron and phonon transport in NbX_(2) with X=Ge,Si,where experimental evidence of strong electron-phonon coupling and hydrodynamic transport has been reported.Based on first-principles density functional theory calculations,we measured the thermal and electrical transport properties of the compounds.We found that phonon-electron scattering strongly affects phonon thermal conductivity(κph)and leads to a weak temperature dependence ofκph instead of a normal inverse temperature dependence when anharmonic three-phonon scattering dominates.In addition,κph contributes to a quarter of the total thermal conductivity,which differs from typical metals in which the total thermal conductivity is predominantly derived from electrons.In contrast to previous numerical research,our electrical resistivity results agree well with the experimental measurements.The anisotropic properties of the transport coefficients are attributed to the electron-phonon dispersion relation.In addition,we found a negligible effect of electron-phonon drag on the transport properties,contrary to the expectation from a strongly coupled electron-phonon fluid. 展开更多
关键词 phonon CONDUCTIVITY ELECTRICAL
在线阅读 下载PDF
Identifying the effect of photo-generated carriers on the phonons in rutile TiO_(2) through Raman spectroscopy
4
作者 Zheng Wang Min Liao +1 位作者 Guihua Wang Meng Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期422-428,共7页
Investigating lattice vibrations through Raman spectroscopy is a crucial method for studying crystalline materials.Carriers can interact with lattices and influence lattice vibrations;thus,it is feasible to study the ... Investigating lattice vibrations through Raman spectroscopy is a crucial method for studying crystalline materials.Carriers can interact with lattices and influence lattice vibrations;thus,it is feasible to study the effect of photo-generated carriers on phonons by analyzing changes in the Raman spectra of semiconductors.Rutile is one of the predominant crystalline phases of TiO_(2),which is a widely utilized metal oxide semiconductor.In this work,rutile TiO_(2) is coated on a thinned optical fiber to concentrate ultraviolet light energy within the material,thereby enhancing the generation of carriers and amplifying the changes in the Raman spectra.A Raman detection laser with a wavelength of 532 nm is utilized to collect the Raman spectra of rutile TiO_(2) during irradiation.Using this setup,the impact of photo-generated carriers on the phonons corresponding to Raman vibrational modes is researched.The localization and non-radiative recombination of photo-generated carriers contribute to a reduction in both the frequencies and lifetimes of phonons.This work provides a novel approach to researching the effect of carriers on phonons. 展开更多
关键词 Raman spectroscopy photo-generated carriers rutile TiO_(2) phononS
在线阅读 下载PDF
Phonon transport properties of Janus Pb_(2)XAs(X=P,Sb,and Bi)monolayers:A DFT study
5
作者 耿嘉鑫 张培 +1 位作者 汤准韵 欧阳滔 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期71-76,共6页
Grasping the underlying mechanisms behind the low lattice thermal conductivity of materials is essential for the efficient design and development of high-performance thermoelectric materials and thermal barrier coatin... Grasping the underlying mechanisms behind the low lattice thermal conductivity of materials is essential for the efficient design and development of high-performance thermoelectric materials and thermal barrier coating materials.In this paper,we present a first-principles calculations of the phonon transport properties of Janus Pb_(2)PAs and Pb_(2)SbAs monolayers.Both materials possess low lattice thermal conductivity,at least two orders of magnitude lower than graphene and h-BN.The room temperature thermal conductivity of Pb_(2)SbAs(0.91 W/m K)is only a quarter of that of Pb_(2)PAs(3.88 W/m K).We analyze in depth the bonding,lattice dynamics,and phonon mode level information of these materials.Ultimately,it is determined that the synergistic effect of low group velocity due to weak bonding and strong phonon anharmonicity is the fundamental cause of the intrinsic low thermal conductivity in these Janus structures.Relative regular residual analysis further indicates that the four-phonon processes are limited in Pb_(2)PAs and Pb_(2)SbAs,and the three-phonon scattering is sufficient to describe their anharmonicity.In this study,the thermal transport properties of Janus Pb_(2)PAs and Pb_(2)SbAs monolayers are illuminated based on fundamental physical mechanisms,and the low lattice thermal conductivity endows them with the potential applications in the field of thermal barriers and thermoelectrics. 展开更多
关键词 lattice thermal conductivity weak bonding phonon anharmonicity first principles calculations
在线阅读 下载PDF
Single pair of charge-2 Dirac and charge-2Weyl phonons in GeO_(2)
6
作者 Dong-Chang He Jia-Xi Liu +2 位作者 Pei-Tao Liu Jiang-Xu Li Xing-Qiu Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期141-145,共5页
The presence of a pair of Weyl and Dirac points(WP-DP)in topological semimetal states is intriguing and sought after due to the effects associated with chiral topological charges.However,identifying these states in re... The presence of a pair of Weyl and Dirac points(WP-DP)in topological semimetal states is intriguing and sought after due to the effects associated with chiral topological charges.However,identifying these states in real materials poses a significant challenge.In this study,by means of first-principles calculations we predict the coexistence of charge-2 Dirac and charge-2 Weyl phonons at high-symmetry points within a noncentrosymmetric P4_(1)2_(1)2 space group.Furthermore,we propose GeO_(2)as an ideal candidate for realizing these states.Notably,we observe two distinct surface arcs that connect the Dirac and Weyl points across the entire Brillouin zone,which could facilitate their detection in future experimental investigations.This study not only presents a tangible material for experimentalists to explore the topological properties of WP-DP states but also opens up new avenues in the quest for ideal platforms to study chiral particles. 展开更多
关键词 ological phonon Weyl points Dirac points
在线阅读 下载PDF
Surface phonon resonance:A new mechanism for enhancing photonic spin Hall effect and refractive index sensor
7
作者 程杰 汪承龙 +3 位作者 李一铭 张亚林 刘胜利 董鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期254-261,共8页
Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit ... Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit their applications beyond the near-infrared regime.In this work,we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance(SPhR)in the mid-infrared regime.The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer.Under the optimal parameter setup,the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 ym,which is much larger than the condition of SPR.Moreover,an NO_(2) gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance.Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC.The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors. 展开更多
关键词 photonic spin Hall effect refractive index sensor surface phonon resonance SIC
在线阅读 下载PDF
Phonon resonance modulation in weak van der Waals heterostructures:Controlling thermal transport in graphene-silicon nanoparticle systems
8
作者 李毅 刘一浓 胡世谦 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期96-102,共7页
The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles inf... The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles influenced by van der Waals forces.Our approach involves the application of non-equilibrium molecular dynamics to assess thermal conductivity while varying the interaction strength,leading to a noteworthy reduction in thermal conductivity.Furthermore,we observe a distinct attenuation in length-dependent behavior within the graphene-nanoparticles system.Our exploration combines wave packet simulations with phonon transmission calculations,aligning with a comprehensive analysis of the phonon transport regime to unveil the underlying physical mechanisms at play.Lastly,we conduct transient molecular dynamics simulations to investigate interfacial thermal conductance between the nanoparticles and the graphene,revealing an enhanced thermal boundary conductance.This research not only contributes to our understanding of phonon transport but also opens a new degree of freedom for utilizing van der Waals nanoparticle-induced resonance,offering promising avenues for the modulation of thermal properties in advanced materials and enhancing their performance in various technological applications. 展开更多
关键词 thermal conductivity molecular dynamics phonon resonance van der Waals interaction graphene-silicon nanoparticle heterostructure
在线阅读 下载PDF
Inverse design of nonlinear phononic crystal configurations based on multi-label classification learning neural networks
9
作者 Kunqi Huang Yiran Lin +1 位作者 Yun Lai Xiaozhou Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期295-301,共7页
Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic feature... Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic features exhibit potential applications in acoustic frequency conversion,non-reciprocal wave propagation,and non-destructive testing.Precisely manipulating the harmonic band structure presents a major challenge in the design of nonlinear phononic crystals.Traditional design approaches based on parameter adjustments to meet specific application requirements are inefficient and often yield suboptimal performance.Therefore,this paper develops a design methodology using Softmax logistic regression and multi-label classification learning to inversely design the material distribution of nonlinear phononic crystals by exploiting information from harmonic transmission spectra.The results demonstrate that the neural network-based inverse design method can effectively tailor nonlinear phononic crystals with desired functionalities.This work establishes a mapping relationship between the band structure and the material distribution within phononic crystals,providing valuable insights into the inverse design of metamaterials. 展开更多
关键词 multi-label classification learning nonlinear phononic crystals inverse design
在线阅读 下载PDF
Sensing the heavy water concentration in an H_(2)O-D_(2)O mixture by solid-solid phononic crystals
10
作者 Mohammadreza Rahimi Ali Bahrami 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期493-498,共6页
A new method based on phononic crystals is presented to detect the concentration of heavy water(D_(2)O)in an H_(2)O-D_(2)O mixture.Results have been obtained and analyzed in the concentration range of 0%-10%and 90%-10... A new method based on phononic crystals is presented to detect the concentration of heavy water(D_(2)O)in an H_(2)O-D_(2)O mixture.Results have been obtained and analyzed in the concentration range of 0%-10%and 90%-100%D_(2)O.A proposed structure of tungsten scatterers in an aluminum host is studied.In order to detect the target material,a cavity region is considered as a sound wave resonator in which the target material with different concentrations of D_(2)O is embedded.By changing the concentration of D_(2)O in the H_(2)O-D_(2)O mixture,the resonance frequency undergoes a frequency shift.Each 1%change in D_(2)O concentration in the H_(2)O-D_(2)O mixture causes a frequency change of about 120 Hz.The finite element method is used as the numerical method to calculate and analyze the natural frequencies and transmission spectra of the proposed sensor.The performance evaluation index shows a high Q factor up to 1475758 and a high sensitivity up to 13075,which are acceptable values for sensing purposes.The other figures of merit related to the detection performance also indicate high-quality performance of the designed sensor. 展开更多
关键词 phononic crystals sensor H_(2)O-D_(2)O mixture CAVITY
在线阅读 下载PDF
Active tuning of anisotropic phonon polaritons in natural van der Waals crystals with negative permittivity substrates and its application in energy transport
11
作者 Shuo Chen Xiaohu Wu Ceji Fu 《Opto-Electronic Science》 2024年第6期1-19,共19页
Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,includ... Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices. 展开更多
关键词 anisotropic phonon polaritons forbidden direction substrate with a negative permittivity near-field energy transport
在线阅读 下载PDF
Properties of ground state and anomalous quantum fluctuations in one-dimensional polaron-soliton systems-the effects of electron-two-phonon interaction and non-adiabatic quantum correlations
12
作者 罗质华 曹锡金 余超凡 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期372-383,共12页
Based on the Holstein model Hamiltonian of one-dimensional molecular crystals, by making use of the expansion approach of the correlated squeezed-coherent states of phonon instead of the two-phonon coherent state expa... Based on the Holstein model Hamiltonian of one-dimensional molecular crystals, by making use of the expansion approach of the correlated squeezed-coherent states of phonon instead of the two-phonon coherent state expansion scheme, the properties of the ground state and the anomalous quantum fluctuations are investigated in a strongly coupled electron-phonon system with special consideration of the electron-two-phonon interaction. The effective renormalization (ai) of the displacement of the squeezed phonons with the effect of the squeezed-coherent states of phonon and both the electron-displaced pbonon and the polaron-squeezed phonon correlations have been combined to obtain the anomalous quantum fluctuations for the corrections of the coherent state. Due to these non-adiabatic correlations, the effective displacement parameter ai is larger than the ordinary parameter ai (0) In comparison with the electron-one-phonon interaction (g) corrected as oig, we have found the electron-two-phonon interaction (gl) corrected as ai2gi is enhanced significantly. For this reason, the ground state energy (E(2)) contributed by the electron-two-phonon interaction is more negative than the single-phonon case (E01)) and the soliton solution is more stable. At the same time, the effects of the electron-two-phonon interaction greatly increase the polaron energy and the quantum fluctuations. Furthermore, in a deeper level, we have considered the effect of the polaron-squeezed phonon correlation (f-correlation). Since this correlation parameter f 〉 1, this effect will strengthen the electron-one and two-phonon interactions by fai9 and f2ai2g1, respectively. The final results show that the ground state energy and the polaron energy will appear more negative further and the quantum fluctuations will gain further improvement. 展开更多
关键词 correlated squeezed-coherent state expansion electron-two-phonon interaction nonadiabatic correlations and renormalized phonon displacement anomalous quantum fluctuations polaron-squeezed phonon correlation
在线阅读 下载PDF
Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
13
作者 Chang-Ning Pan Meng-Qiu Long JuJa 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期566-571,共6页
Thermal transport properties are investigated for out-of-plane phonon modes (FPMs) and it-plane phonon modes (IPMs) in double-stub graphene nanoribbons (GNRs). The results show that the quantized thermal conduct... Thermal transport properties are investigated for out-of-plane phonon modes (FPMs) and it-plane phonon modes (IPMs) in double-stub graphene nanoribbons (GNRs). The results show that the quantized thermal conductance plateau of FPMs is narrower and more easily broken by the double-stub structure. In the straight GNRs, the thermal conductance of FPMs is higher in the low temperature region due to there being less cut-off frequency and more low-frequency excited modes. In contrast, the thermal conductance of IPMs is higher in the high temperature region becau~,'.e of the wider phonon energy spectrum. Furthermore, the thermal transport of two types of phonon modes can be modulated by the double-stub GNRs, the thermal conductance of FPMs is less than that of IPMs in the low temperatures, but it dominates the contribution to the total thermal conductance in the high temperatures. The modulated thermal conclu~'tanc:e can provide a guideline for designing high-performance thermal or thermoelectric nanodevices based on graphene. 展开更多
关键词 graphene nanoribbon flexural phonons in-plane phonons thermoelectric properties
在线阅读 下载PDF
Electron–acoustic phonon interaction and mobility in stressed rectangular silicon nanowires
14
作者 朱林利 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期411-417,共7页
We investigate the effects of pre-stress and surface tension on the electron–acoustic phonon scattering rate and the mobility of rectangular silicon nanowires. With the elastic theory and the interaction Hamiltonian ... We investigate the effects of pre-stress and surface tension on the electron–acoustic phonon scattering rate and the mobility of rectangular silicon nanowires. With the elastic theory and the interaction Hamiltonian for the deformation potential, which considers both the surface energy and the acoustoelastic effects, the phonon dispersion relation for a stressed nanowire under spatial confinement is derived. The subsequent analysis indicates that both surface tension and pre-stress can dramatically change the electron–acoustic phonon interaction. Under a negative(positive) surface tension and a tensile(compressive) pre-stress, the electron mobility is reduced(enhanced) due to the decrease(increase) of the phonon energy as well as the deformation-potential scattering rate. This study suggests an alternative approach based on the strain engineering to tune the speed and the drive current of low-dimensional electronic devices. 展开更多
关键词 phonon properties elastic model electron–acoustic phonon interaction carrier mobility
在线阅读 下载PDF
Thermal conductivity of systems with a gap in the phonon spectrum
15
作者 E Salamatov 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期424-430,共7页
An original theoretical model for describing the low-temperature thermal conductivity in systems with a region of forbidden values (a gap) in the phonon spectrum is proposed. The model is based on new experimental r... An original theoretical model for describing the low-temperature thermal conductivity in systems with a region of forbidden values (a gap) in the phonon spectrum is proposed. The model is based on new experimental results on the temperature dependence of the phonon diffusion coefficient in nanoceramics and dielectric glasses which showed a similar anomalous behavior of the diffusion coefficient in these systems that may be described under the assumption of a gap in the phonon spectrum. In this paper, the role of the gap in low-temperature behavior of the thermal conductivity, ~'(T), is analyzed. The plateau in the temperature dependence of the thermal conductivity is shown to correlate with the position and the width of the gap. The temperature dependence of thermal conductivity of such systems when changing the scat- tering parameters related to various mechanisms is studied. It is found that the umklapp process (U-processes) involving low-frequency short-wavelength phonons below the gap forms the behavior of the temperature dependence of thermal con- ductivity in the plateau region. A comparison of the calculated and experimental results shows considerable possibilities of the model in describing the low-temperature thermal conductivity in glass-like systems. 展开更多
关键词 phononic band gap phonon diffusion coefficient thermal conductivity glassy crystals
在线阅读 下载PDF
Phonon dichroism in proximitized graphene
16
作者 单文语 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期112-117,共6页
We systematically investigate the phonon dichroism in proximitized graphene with broken time-reversal symmetry.We find that in the absence of any type of spin–orbit coupling,phonon dichroism vanishes.Linear and circu... We systematically investigate the phonon dichroism in proximitized graphene with broken time-reversal symmetry.We find that in the absence of any type of spin–orbit coupling,phonon dichroism vanishes.Linear and circular phonon dichroism occur in the presence of uniform(staggered)intrinsic spin–orbit coupling and ferromagnetic(antiferromagnetic)exchange coupling.All these situations can be distinguished by their specific behaviors of phonon absorption at the transition point.Our finding provides new possibilities to use phonon dichroism to identify the form of spin–orbit coupling and exchange coupling in proximitized graphene on various magnetic substrates. 展开更多
关键词 phonon dichroism spin–orbit coupling proximitized graphene electron–phonon interaction
在线阅读 下载PDF
Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivityθ-phase TaN
17
作者 吴超 刘晨晗 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期543-548,共6页
Phonon bandgap typically has a significant effect on phonon-phonon scattering process.In this work,the effects of mass modified phonon bandgap inθ-phase Ta N are systemically investigated by the means of first-princi... Phonon bandgap typically has a significant effect on phonon-phonon scattering process.In this work,the effects of mass modified phonon bandgap inθ-phase Ta N are systemically investigated by the means of first-principles calculations with linearized Boltzmann transport equation.Through detailed calculations,we find that phonon bandgap has a significant effect on three-phonon process while exhibits a much weaker effect on four-phonon process.The reason for the ultrahigh thermal conductivity ofθ-phase Ta N is the long lifetime of phonons including both three-phonon and four-phonon processes,which originates from the weak phonon anharmonicity and large phonon bandgap-induced small phonon-phonon scattering phase space.This work advances the understanding of phonon bandgap effects on phonon transport. 展开更多
关键词 ultrahigh thermal conductivity phonon-phonon scattering phase space first-principles calculation phonon bandgap
在线阅读 下载PDF
Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals 被引量:19
18
作者 王刚 邵丽晖 +1 位作者 刘耀宗 温激鸿 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第8期1843-1848,共6页
Based on a better understanding of the lattice vibration modes, two simple spring-mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band ... Based on a better understanding of the lattice vibration modes, two simple spring-mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band gaps of the ternary locally resonant phononic crystals. The parameters of the models are given in a reasonable way based on the physical insight into the band gap mechanism. Both the lumped-mass methods and our models are used in the study of the influences of structural and the material parameters on frequencies on both edges of the lowest gaps in the ternary locally resonant phononic crystals. The analytical evaluations with our models and the theoretical predictions with the lumped-mass method are in good agreement with each other. The newly proposed heuristic models are helpful for a better understanding of the locally resonant band gap mechanism, as well as more accurate evaluation of the band edge frequencies. 展开更多
关键词 phononic crystals locally resonant analog model
在线阅读 下载PDF
Band gap control of phononic beam with negative capacitance piezoelectric shunt 被引量:9
19
作者 陈圣兵 温激鸿 +2 位作者 郁殿龙 王刚 温熙森 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期405-409,共5页
Periodic arrays of negative capacitance shunted piezoelectric patches are employed to control the band gaps of phononic beams. The location and the extent of induced band gap depend on the mismatch in impedance genera... Periodic arrays of negative capacitance shunted piezoelectric patches are employed to control the band gaps of phononic beams. The location and the extent of induced band gap depend on the mismatch in impedance generated by each patch. The total impedance mismatch is determined by the added mass and stiffness of each patch as well as the shunting electrical impedance. Therefore, the band gap of the shunted phononic beam can be actively tuned by appropriately selecting the value of negative capacitance. The control of the band gap of phononic beam with negative capacitive shunt is demonstrated numerically by employing transfer matrix method. The result reveals that using negative capacitive shunt to tune the band gap is effective. 展开更多
关键词 phononic crystal band gao negative capacitive shunt oiezoelectric beam
在线阅读 下载PDF
Flexural wave band-gaps in phononic metamaterial beam with hybrid shunting circuits 被引量:6
20
作者 张浩 温激鸿 +2 位作者 陈圣兵 王刚 温熙森 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期269-274,共6页
Periodic arrays of hybrid-shunted piezoelectric patches are used to control the band-gaps of phononic metamaterial beams. Passive resistive-inductive (RL) shunting circuits can produce a narrow resonant band-gap (R... Periodic arrays of hybrid-shunted piezoelectric patches are used to control the band-gaps of phononic metamaterial beams. Passive resistive-inductive (RL) shunting circuits can produce a narrow resonant band-gap (RG), and active negative capacitive (NC) shunting circuits can broaden the Bragg band-gaps (BGs). In this article, active NC shunting circuits and passive resonant RL shunting circuits are connected to the same piezoelectric patches in parallel, which are usually called hybrid shunting circuits, to control the location and the extent of the band-gaps. A super-wide coupled band-gap is generated when the coupling between RG and the BG occurs. The attenuation constant of the infinite periodic structure is predicted by the transfer matrix method, which is compared with the vibration transmittance of a finite periodic structure calculated by the finite element method. Numerical results show that the hybrid-shunting circuits can make the band-gaps wider by appropriately selecting the inductances, negative capacitances, and resistances. 展开更多
关键词 phononic metamaterial band-gap hybrid shunting circuits flexural wave
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部