A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a p...A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a polytopic linear parameter varying (LPV) model is developed to represent the complex nonlinear longitudinal dynamics of the FAHV. Secondly, based on the obtained polytopic LPV model, the flight envelope is divided into four smaller subregions, and four gain-scheduled controllers are designed for these parameter subregions. Then, by the defined switching characteristic function, these gain-scheduled controllers are switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a given tracking error performance criterion. The condition of gain-scheduled switching controller synthesis is given in terms of linear matrix inequalities (LMIs) which can be easily solved by using standard software packages. Finally, simulation results show the effectiveness of the presented method.展开更多
Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of...Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.展开更多
A guaranteed cost control problem for a class of linear discrete-time switched systems with norm-bounded uncertainties is considered in this article. The purpose is to construct a switching rule and design a state fee...A guaranteed cost control problem for a class of linear discrete-time switched systems with norm-bounded uncertainties is considered in this article. The purpose is to construct a switching rule and design a state feedback control law, such that, the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties under the constructed switching rule. A sufficient condition for the existence of guaranteed cost controllers and switching rules is derived based on the Lyapunov theory together with the linear matrix inequality (LMI) approach. Furthermore, a convex optimization problem with LMI constraints is formulated to select the suboptimal guaranteed cost controller. A numerical example demonstrates the validity of the proposed design approach.展开更多
A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-w...A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.展开更多
In this paper,a linear/nonlinear switching active disturbance rejection control(SADRC)based decoupling control approach is proposed to deal with some difficult control problems in a class of multi-input multi-output(M...In this paper,a linear/nonlinear switching active disturbance rejection control(SADRC)based decoupling control approach is proposed to deal with some difficult control problems in a class of multi-input multi-output(MIMO)systems such as multi-variables,disturbances,and coupling,etc.Firstly,the structure and parameter tuning method of SADRC is introduced into this paper.Followed on this,virtual control variables are adopted into the MIMO systems,making the systems decoupled.Then the SADRC controller is designed for every subsystem.After this,a stability analyzed method via the Lyapunov function is proposed for the whole system.Finally,some simulations are presented to demonstrate the anti-disturbance and robustness of SADRC,and results show SADRC has a potential applications in engineering practice.展开更多
In this paper,the optimal control of non-linear switching system is investigated without knowing the system dynamics.First,the Hamilton-Jacobi-Bellman(HJB)equation is derived with the consideration of hybrid action sp...In this paper,the optimal control of non-linear switching system is investigated without knowing the system dynamics.First,the Hamilton-Jacobi-Bellman(HJB)equation is derived with the consideration of hybrid action space.Then,a novel data-based hybrid Q-learning(HQL)algorithm is proposed to find the optimal solution in an iterative manner.In addition,the theoretical analysis is provided to illustrate the convergence and optimality of the proposed algorithm.Finally,the algorithm is implemented with the actor-critic(AC)structure,and two linear-in-parameter neural networks are utilized to approximate the functions.Simulation results validate the effectiveness of the data-driven method.展开更多
A new hierarchical switching control system of multiple models based on robust control theory is designed for some plant with large uncertainties. The model set and controller set are designed by robust control theory...A new hierarchical switching control system of multiple models based on robust control theory is designed for some plant with large uncertainties. The model set and controller set are designed by robust control theory and the characteristics of robust control system are taken into account. A new kind of switching index function by estimating uncertainty is designed. Furthermore, stability of the closed system is analyzed by the small gain theorem in the sense of exponentially weighted L2 norm. And simulation is done on a plant with both parameter uncertainty and un-modeled dynamics. Both theoretical analysis and simulation results show that this new hierarchical switching control system can control the plant with large uncertainties effectively and has good performance of tracking and stability.展开更多
The problem of controlling a single-input-single-output plant without prior knowledge of high frequency gain sign is addressed by using the model reference robust control approach.A switching method is proposed based ...The problem of controlling a single-input-single-output plant without prior knowledge of high frequency gain sign is addressed by using the model reference robust control approach.A switching method is proposed based on a monitoring function so that after a finite number of swi- tchings the tracking error converges to zero exponentially.Furthermore,it is shown that if some initial states of the closed-loop system are zero,only one switching is needed.展开更多
Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H...Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.展开更多
For a class of fractional-order linear continuous-time switched systems specified by an arbitrary switching sequence,the performance of PDα-type fractional-order iterative learning control(FOILC)is discussed in the s...For a class of fractional-order linear continuous-time switched systems specified by an arbitrary switching sequence,the performance of PDα-type fractional-order iterative learning control(FOILC)is discussed in the sense of L^p norm.When the systems are disturbed by bounded external noises,robustness of the PDα-type algorithm is firstly analyzed in the iteration domain by taking advantage of the generalized Young inequality of convolution integral.Then,convergence of the algorithm is discussed for the systems without any external noise.The results demonstrate that,under some given conditions,both convergence and robustness can be guaranteed during the entire time interval.Simulations support the correctness of the theory.展开更多
The robust stabilization problem for a class of uncertain discrete-time switched systems is presented. A predictive sliding mode control strategy is proposed, and a discrete-time reaching law is improved. By applying ...The robust stabilization problem for a class of uncertain discrete-time switched systems is presented. A predictive sliding mode control strategy is proposed, and a discrete-time reaching law is improved. By applying a predictive sliding surface and a reference trajectory, combining with the state feedback correction and rolling optimization method in the predictive control strategy, a predictive sliding mode controller is synthesized, which guarantees the asymptotic stability for the closed-loop systems. The designed control strategy has stronger robustness and chattering reduction property to conquer with the system uncertainties. In addition, a unique nonswitched sliding surface is designed. The reason is to avoid the repetitive jump of the trajectories of the state components of the closed-loop system between sliding surfaces because it might cause the possible instability. Finally, a numerical example is given to illustrate the effectiveness of the proposed theory.展开更多
New idea of stabilization for discrete linear multiple-input system is proposed based on switching technique and single-input control. The system discussed here denotes coupled singleinput objects to be controlled. Th...New idea of stabilization for discrete linear multiple-input system is proposed based on switching technique and single-input control. The system discussed here denotes coupled singleinput objects to be controlled. The central processing unit chooses an object at each discrete instant according to periodic switching strategy and controls it by local state feedback. Stabilization of a multiple-input system is turned into stabilization of single-input systems under periodic switching strategy, which is easy to be realized in practice. On the other hand, only one central processing unit can realize all local controllers, which decreases the cost and increases the usage of the resources.展开更多
基金supported by the National Outstanding Youth Science Foundation(61125306)the National Natural Science Foundation of Major Research Plan(91016004+2 种基金61034002)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20110092110020)the Scientific Research Foundation of Graduate School of Southeast University(YBJJ1103)
文摘A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a polytopic linear parameter varying (LPV) model is developed to represent the complex nonlinear longitudinal dynamics of the FAHV. Secondly, based on the obtained polytopic LPV model, the flight envelope is divided into four smaller subregions, and four gain-scheduled controllers are designed for these parameter subregions. Then, by the defined switching characteristic function, these gain-scheduled controllers are switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a given tracking error performance criterion. The condition of gain-scheduled switching controller synthesis is given in terms of linear matrix inequalities (LMIs) which can be easily solved by using standard software packages. Finally, simulation results show the effectiveness of the presented method.
基金Projects(61075065,60774045) supported by the National Natural Science Foundation of ChinaProject supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.
基金This project was supported by a Program for Changjiang Scholars and an Innovative Research Team in the University and the National Natural Science Foundation of P. R. China (60474015).
文摘A guaranteed cost control problem for a class of linear discrete-time switched systems with norm-bounded uncertainties is considered in this article. The purpose is to construct a switching rule and design a state feedback control law, such that, the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties under the constructed switching rule. A sufficient condition for the existence of guaranteed cost controllers and switching rules is derived based on the Lyapunov theory together with the linear matrix inequality (LMI) approach. Furthermore, a convex optimization problem with LMI constraints is formulated to select the suboptimal guaranteed cost controller. A numerical example demonstrates the validity of the proposed design approach.
基金supported by the Aeronautical Science Foundation of China(20175752045)。
文摘A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.
基金supported by the Scientific Research Innovation Development Foundation of Army Engineering University((2019)71).
文摘In this paper,a linear/nonlinear switching active disturbance rejection control(SADRC)based decoupling control approach is proposed to deal with some difficult control problems in a class of multi-input multi-output(MIMO)systems such as multi-variables,disturbances,and coupling,etc.Firstly,the structure and parameter tuning method of SADRC is introduced into this paper.Followed on this,virtual control variables are adopted into the MIMO systems,making the systems decoupled.Then the SADRC controller is designed for every subsystem.After this,a stability analyzed method via the Lyapunov function is proposed for the whole system.Finally,some simulations are presented to demonstrate the anti-disturbance and robustness of SADRC,and results show SADRC has a potential applications in engineering practice.
基金supported by the National Key R&D Program of China(2018AAA0101400)the Natural Science Foundation of Jiangsu Province of China(BK20202006)the National Natural Science Foundation of China(61921004,62173251).
文摘In this paper,the optimal control of non-linear switching system is investigated without knowing the system dynamics.First,the Hamilton-Jacobi-Bellman(HJB)equation is derived with the consideration of hybrid action space.Then,a novel data-based hybrid Q-learning(HQL)algorithm is proposed to find the optimal solution in an iterative manner.In addition,the theoretical analysis is provided to illustrate the convergence and optimality of the proposed algorithm.Finally,the algorithm is implemented with the actor-critic(AC)structure,and two linear-in-parameter neural networks are utilized to approximate the functions.Simulation results validate the effectiveness of the data-driven method.
基金Supported by National Key Program of Technology (2002BA404A21)
文摘A new hierarchical switching control system of multiple models based on robust control theory is designed for some plant with large uncertainties. The model set and controller set are designed by robust control theory and the characteristics of robust control system are taken into account. A new kind of switching index function by estimating uncertainty is designed. Furthermore, stability of the closed system is analyzed by the small gain theorem in the sense of exponentially weighted L2 norm. And simulation is done on a plant with both parameter uncertainty and un-modeled dynamics. Both theoretical analysis and simulation results show that this new hierarchical switching control system can control the plant with large uncertainties effectively and has good performance of tracking and stability.
基金Supported by National Natural Science Foundation of P.R.China(60174001)National Natural Science Foundation of Beijing(4022007)
文摘The problem of controlling a single-input-single-output plant without prior knowledge of high frequency gain sign is addressed by using the model reference robust control approach.A switching method is proposed based on a monitoring function so that after a finite number of swi- tchings the tracking error converges to zero exponentially.Furthermore,it is shown that if some initial states of the closed-loop system are zero,only one switching is needed.
基金National Natural Science Foundation of P. R. China (60574027)Opening Project of National Laboratory of Indus-trial Control Technology of Zhejiang University (0708001)
基金This work was supported by the National Natural Science Foundation of China (61273107, 61573077, 61503003), the Dalian Leading, Dalian, China, the Doctoral Foundation of Tianjin Normal University (135202XB1613), the Postdoctoral Science Foundation of China (2015M581332), and the Natural Science Foundation of Anhui Province (150808. 5QF126)
基金supported by the National Natural Science Foundation of China(61403344)
文摘Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.
基金Supported by National Natural Science Foundation ot China (61203065, 61120106009), the Program of Natural Science of Henan Provincial Education Department (12A510013), and the Program of Open Laboratory Foundation of Control Engineering Key Discipline of Henan Provincial High Education (KG 2011-10)
文摘在这份报纸,反复的学习控制(ILC ) 与任意的切换的信号为线性分离时间的交换系统的一个类被考虑。交换系统重复地在有限时间间隔期间被操作,这被假定,然后第一个顺序 P 类型 ILC 计划能被用来完成完美的追踪在上自始至终间隔。由超级向量途径,为在重复领域的如此的 ILC 系统的一个集中条件能被给。理论分析被模拟支持。
基金supported by the National Natural Science Foundation of China(61201323)the Special Fund Project for Promoting Scientific and Technological Innovation in Xuzhou City(KC18013)the Cultivation Project of Xuzhou Institute of Technology(XKY2017112)
文摘For a class of fractional-order linear continuous-time switched systems specified by an arbitrary switching sequence,the performance of PDα-type fractional-order iterative learning control(FOILC)is discussed in the sense of L^p norm.When the systems are disturbed by bounded external noises,robustness of the PDα-type algorithm is firstly analyzed in the iteration domain by taking advantage of the generalized Young inequality of convolution integral.Then,convergence of the algorithm is discussed for the systems without any external noise.The results demonstrate that,under some given conditions,both convergence and robustness can be guaranteed during the entire time interval.Simulations support the correctness of the theory.
基金supported by the Youth Science and Innovation Foundation of Harbin(2007RFQXG052).
文摘The robust stabilization problem for a class of uncertain discrete-time switched systems is presented. A predictive sliding mode control strategy is proposed, and a discrete-time reaching law is improved. By applying a predictive sliding surface and a reference trajectory, combining with the state feedback correction and rolling optimization method in the predictive control strategy, a predictive sliding mode controller is synthesized, which guarantees the asymptotic stability for the closed-loop systems. The designed control strategy has stronger robustness and chattering reduction property to conquer with the system uncertainties. In addition, a unique nonswitched sliding surface is designed. The reason is to avoid the repetitive jump of the trajectories of the state components of the closed-loop system between sliding surfaces because it might cause the possible instability. Finally, a numerical example is given to illustrate the effectiveness of the proposed theory.
基金Supported by National Natural Science Foundation of China(60904051)the Innovative Team Program of the National Natural Science Foundation of China(61021002)the Royal Academy of Engineering-Research Exchanges with China and India Awards
基金Supported by National Natural Science Foundation of P. R. China (60274009 and 69934010)Specialized Research Fund for the Doctoral Program of Higher Education (20020145007)Doctoral Foundation of P. R. China (2003033500)Technological Foundation of Southeast University (9802001472)
文摘New idea of stabilization for discrete linear multiple-input system is proposed based on switching technique and single-input control. The system discussed here denotes coupled singleinput objects to be controlled. The central processing unit chooses an object at each discrete instant according to periodic switching strategy and controls it by local state feedback. Stabilization of a multiple-input system is turned into stabilization of single-input systems under periodic switching strategy, which is easy to be realized in practice. On the other hand, only one central processing unit can realize all local controllers, which decreases the cost and increases the usage of the resources.